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APOLLO NOTE NO. 211 C. H. Dale
Z June 1964

VELOCITY COMPONENT ERRORS WHICH WOULb OCCUR DUE

TO I-IIGHLY INCREASED GYRO DRIFT RATES FOR

INERTIALLY CONTROLLED LEM DURING

THE THRUSTING PORTION OF

THE LUNAR ASCENT

/

O

•_[t is assumed that the LEM IMU platform will be aligned with

its gyro axes in the up, forward-horizontal, and out-of-plane directions.

If this is so, it is easy to estimate the velocity errors which will occur

if any gyro starts a larger than normal drift rate. The following sketch

and •short analysis were used to derive the enclosed curves showing the
9 / e

_ e_ect o_
0x, 0y and 0 z gyro _ailures.

X

Y

...... =- y

O

Thrust components of acceleration in inertial frame (meters/sec. 2)

= -11 32x 3048= -3.45m/sec. 2, O_ t< 8 seconds

= -2.12 + 27.58x lO'4t + 2.68x 10 "6tZ +.88x lO'8t 3,

8 -_ t < 325 seconds

= -1. Z37 - .457x lO'4t +2.68x 10 "6t Z + 88x 10 "8t 3
• p

325 <_ t _ 397 seconds



O
a

Y
= 0 for 0 __ t-= 8 seconds

= 2. 606 + 82.3 x lO-4t + 2. 347 x lO'6t 2 - I x lO'8t 3,

= 2.606 + 82.3 x lO'4t + 1. 338 x lO'6t 2

8___t<325

325__ t __397

a = 0 for all time
Z

Burnout occurs at 397 seconds.

The errors in the velocity components at any time may be

expressed in terms of the inertial components of acceleration; ax, ay,

and az, and of the rotations due to drift of the platform; 0x, 0y, and

0z, which is assumed to be initially aligned with the x, y, z coordinate

system.

0 t

•Z_k = _0 " a7 0z dt

t

A_ =_0 axSz dt

t

Z_. =_0 (ay 0x- ax Oy) dt

since a is = 0
Z

O

Now each angular error: @x' .07' and @z' will be assumed to occur

due to a constant drift rate: 0x, (}y, and _z" The expected drift

rate will be 10 meru or . 72 x 10 -6 rad/sec. A failure will consist

of an increased drift rate occurring at some time after launch.

Multiple failures will not be studied. Thus,
t t t

0x x y y .z z

2
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APOLLO NOTE NO. ZlZ H. Epstein
5 June 1964

SUMMARY DATA -

RECENT DOPPLER RESIDUES

This note presents a summary of the results obtained con-

cerning recent Doppler residues. These residues were generated

as the difference between the computed values from the orbit determi-

nation program (ODP) and the observed values. The data supplied by

JPL was concerned with the Echo (Station 1Z) and Pioneer (Station 11)

sites at Goldstone. The conclusions obtained from the data analyzed

were discussed with Joe Fearey and others at JPL. The values

obtained are clearly consistent with previous results. These indicate

that much better Doppler accuracy has been measured than has pre-

viously been assumed. In addition, the use of improved (or even the

present) atomic standards for frequency and the reduction of quantization

errors (Apollo Note No. 2-03) should lead to a reduction in the higher

frequency error component of about an additional order of magnitude.

This improvement should prove to be of considerable importance for

LEM ascent and descent.

Table 1 indicates some pertinent characteristics of the data

analyzed. Cases 1 - 6, 7 - 9, and 11 - 18 consists of data sets for

counting time intervals of 1, 10, and 60 seconds respectively.

Rubidium frequency standards were employed for Cases 5, 7, and

11 - 18. Cases 1, Z, 3, 4, 6, 8, and 9 relied on highly stable crystal

oscillators in place of the atomic standards for the ground-based

transmitter and receivers. Unfortunately, relatively few data samples

are available for 1 and 10 second counting times with the atomic

standard employed.

The nature of the residue data is such as to indicate that the

errors can be grouped into high and low frequency components.

The hig h frequency error components are taken as errors with
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Table 1.

Nature of Data Analyzed

0

Ca, se INo. Station

I Echo

Echo

Pioneer

Pioneer

Pioneer

Pioneer

Echo

Echo

Echo

11 Pioneer

12 Pioneer

13 Pioneer

14 Pioneer

Echo

Echo

Echo

Echo

Type

Frequency
Standard

Crystal

Crystal

Crystal

C rys tal

Rubidium

C rys tal

Rubidium

Crys tal

C rys tal

Rubidium

Rubidium

Rubidium

i Rubidium

| Rubidium

!Rubidium

I Rubidium

I Rubidium

Day

i 31

1 33

i

' 31!

31
i

i 33

s 33

i 33

I 33
E

, 31

F

i

[ 31

I 31

32

33

31

31

32

33

Time Interval

(GMT)

08:58:20 - 09:05:02

09:04:12 - 09:24:32

08:20:03 - 08:57:08

08:58:20 - 09:04:58

I 08:39:46 - 08:44:00

I 08:51:01 09:24:32
m

i 08:25:07 - 08:43:57

08:45:27 - 09:03:37

08:20:16 - 08:57:01

I0:02:32 - 13:28:32

13:45:32 - 15:56:32

I 06:15:32 - 17:13:32

I 06:15:32 - 07:58:32

10:02:32 - 13:28:32

13:45:32 - 15:56:32

06: 15:32.- 17:13:32

06:09:32 - 07:58:32

Number Count
of Time

Points (sec.)

1

1

1

1

1

403

1219

2204

399

255

1999

114

109

218

i

201 ,

I 126
653

i

104

!

i 206

I 32

: 658

110

ilO

,10

10

60

60

60

60

60

60

60

60

0
Z
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correlation times of less than about one minute and the low frequency

errors corresponding to correlation times greater than about a minute.

Considering first the high frequency error components, the data avail-

able is consistent with primary error sources associated only with

the frequency standard and random quantization error for the 1 and I0

second data. Receiver noise, propagation errors, and other error

sources must be of considerably smaller magnitude. Tables Z-a

and Z-b indicate the accuracy degradation associated with the use of a

stable crystal oscillator rather than the rubidium standard. The

symbol o-T indicates the calculated standard deviation of the residue

while o- indicates the excess standard deviation above random quantization
x

error. Af/f indicates the equivalent oscillator stability associated

with o- . No values for Z_f/f or o- are indicated when the atomic standard
X x

is employed (Cases 5 and 7) since the variance of the variance of random

quantization noise is consistent with excess noise. These results indicate

that the high frequency error associated with the oscillator corresponds

to an oscillator with frequency stability of about 5 x 10 -10 and 1 x 10 -10

for one second and I0 second counting times, respectively. To compare

these results more closely with known oscillator performance it would

be necessary to properly take into account the transit time involved.

Numerical values for the correlation function for Cases 5 and 7 (atomic

standards) are consistent with random quantization error alone. These

results indicate that the use of atomic standards for frequency and the

reduction of the quantization error can be expected to lead to con-

siderable improvements in the high frequency error characteristics.

The one minute data (rubidium standard used) indicates not

only the quantization error but, in addition, another error source of

about the same magnitude. The high frequency component of the error

source appears to have a correlation time of somewhat in excess of

one minute. This component of error is probably due to the media

(e. g., propagation effects). Sufficient data is not presently available

to make a good estimate of the magnitude of. the uncalibrated propagation



O

Table Z-a.

Increase in High Frequency Error Associated

With Crystal Oscillators - 1 Second Counting Time

O

Case

No.

Z

3

4

5_

(cps)

.673

•544

.658

.634

•43Z

•573

o-
x

(cps)

•536

.361

•516

•485

.403

Af

f

5x10

4xlO

5x10

-I0

-i0

-I0

-I0
5x10

-i0
4x10

_:cRubidium Data

O 4
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Table 2-b.

Increase in High Frequency Error Associated

With Crystal Oscillators - 10 Second Counting Time

0

Case

No.

7*

(cps)

•0414

• 10Z5

•IZZl

I o-
I x
I (cps)

.0941

.115

Z_f
T

-I0
.9x10

-I0
1.2x i0

* Rubidium Data

O 5
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error during the periods of time data was taken. To best establish

the magnitude of the high frequency component of error a polynomial

fit was made to the residue data. Polynomial fits up to and including

fifth degree were employed. A first degree polynomial was found

satisfactory for fitting data set of less than about Z ho_11 _. A tbi,,|

degree pol>-nomial was appropriate for an entire pass (about 11 hours).

Table 3 summarizes the most important characteristics of the error

components for the one minute data. o-T indicates the standard de-

viation (S. D. ) of the error about the mean. The polynomial degree

used to separate noise components is indicated. Random quantisation

error corresponds to a S.D. of about . 0068 cps for 1 minute samples

and consequently still represents a primary error source even for

1 minute data. The excess noise components above quantization error

are indicated in the last two column, O-L_ was determined from the

reduction in S.D. associated with the polynomial fit. O-HF is the

remaining error component of excess noise. The correlation function

for the residue data indicates that the primary noise source associated

with O-HF has a correlation time of about one or two minutes. The

fact that the I0 second rubidium data indicated no significant high

frequency error component other than quantizatio n error further verifies

that the dominant excess noise should be greater than about one minute.

The one minute data indicates a potential high frequency error

characteristic somewhat better than about . 01 cps. The reduction

of quantization error by about one order of magnitude should allow

the full potential of the present DSIF to be obtained for one minute

s ample s.

crLf is associated with an extremely low frequency drift present

in the data. This error component may be considered as though the

bias error were non-stationary. Cases 13 and 17 which last for an

entire pass of about ii hours clearly indicate this effect, particularly

on the correlation function. This associated O-Lf is about .003 to .004 cps.

Sample intervals less than about 1 hour indicate o-Lf less than .001 cps.
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Table 3.

Summary of Standard Deviations for 1 Minute Data

O

Case
No.

ii

iZ

13

14

15

16

17

18

%
(cps)

•0O91

• 0087

.0099

•0093

.0097

.0086

•0092

•O09Z

Polynomial

Degree

Z

Z

Excess Noise

•001Z

,•00Z0

.0037

•0013

• 0007

..OOZ5

.0031

•001Z

Components

O-HF

(cps)

.0059

•0050

•0061

.OO6O

.0069 .

•0046

•0053

•0061

0 7

=.
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The final residue quantity of interest is the bias error (e. g.,

the average value of the residue error). Residue bias errors are

indicated in Table 4. The S.D. of Random Quantization Error is

indicated also to more readily associate magnitudes. Cases 11 - 14

where the largest differential range bias occur are associated with

the Pioneer one minute residue. This tends to indicate that the bias

primarily arises from the media and microwave relay between the

Echo and Pioneer sites. Bias errors for the other cases are con-

sistent with values associated with finite sample sizes.

These results indicate that Doppler capability for the Apollo

mission is much better than has been previously assumed for deep-

space applications.

Corresponding results for near-Earth operation (e. g., circular

parking orbit around Earth) are not as yet available, Aside _rorn

propagation errors which should typically be larger, other error

sources should prove to be compatible with the above results for a

properly designed system.

0
8
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Table 4.

Bias in Residue Data

O

O

Case

No.

1

2

3

4

5

6

7

8

9

11

12

13

14

15

16

17

18

S.D. of
Kandom

Quanti-
zation

Error

cps

.0425

-• 0033

• 0177

•0317

.0019

-. 0005

• 0042

• 0058

.0050

,, .|,

-. 0062

-. 0031

-. 0040

-.0029

-. 0004

-. 0003

• 0004

i •0002

,i

Bias Error

cycles

.0425

-.0033

.0177

.0317

.0019

-.0005

.04Z

.058

.050

-. 373

-. 186

-.237

-. 175

-.OZZ

-.017

• 023

.011

•408

cm/sec.

.680

-. 054

• 287

.516

.031

-. 008

• 068

• O95

.082

i

-. I01

-.050

-. 064

-. 048

-. 006

-. 005

.OO6

•003

cm

.680

-. 054

•287

.516

•031

-,008

.682

.952

.820

-6.06

-3.02

-3.85

-2.85

- .35

- .27

.38

.17

6.64

9
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APOLLO NOTE NO. Z13

DYNAMIC PROGRAMMING

L. Horowitz
8 June 1964

Introduction

This is a brief discussion of dynamic programming as it

applies to the determination of optimum spacing of corrective boosts.

The following material is drawn largely from 1%. Bellman's, Dynamic

Programming (Princeton, 1957).

©

O

Formulation:

We consider a system characterized by a state vector x(t)

whose components are xi(t); i = 1,..., lV[. Associated with this system

is a vector-valued decision or control function v(t) whose components

are vi(t); i= 1,..., 1%. x and v are dynamically related by a function

specifying the rate of change of the system in the event it is in state

x(t) and decision v_(t) is made:

d x(t)
= G (x,v) •

dt

The components of G are Gi; i=l .... ,M. The system starts at a

specified initial state x(o) = c and operates for a time T. The entire

process is characterized by a scalar-valued "cost" functional J whose

time derivative is F = F (x(t), v(t)). The problem is to determine the

decision or control function v_(t) (subject possibly to auxiliary constraints

which we ignore for the moment) which minimizes the cost functional

T

j Iv]= _F(x(t), v(t))dt, (I)



t

O
r 7

where we have written 3 |v| instead of J (v_)to emphasize thatJ is

a functional (rather than just a function) on v_. In Apollo language,

x(t) is the six-dimensional vector specifying position and velocity,

v(t) is the three dimensional 'rboost" vector, G is specified by the

equations of motion, and J is the fuel cost associated with a particular

phase of the mission.

,Dynamic Pro_rammin_ Solution:

We first note that the minimum of the function J

only on c and T and not on v:

minJ[vl•
V

(z)

0
The next step is to derive a partial differential equation in f(c, T) by

comparing minimal costs of processes of duration T with those of

duration T + A. For this we require Bellman's so-called Principle of

Optimality, (Bellman, loc. cir., p. 81ff) which defines an optimal

decision process as one with the property that whatever the initial

decisions, the remaining decisions are optimal with respect to the

state resulting from the initial decisions. Thus, f (c, T) is the cost

of a control process v_(t) in which the initial state of the system is c,

the duration is T and an optimal selection of the control function v-(t)

is made at each point of the interval (0, T). We then write

O

f (c_,T +Z_= rain (c,_w)A+ f (c_+ G (c, w) A, T) + o(

W

where F (c, w) A is the cost of the first A time units of operation under

optimum _w, f (c_ + G (c_, w) A, T) the minimal cost of the process

starting at state c + G (c_, _v_ A and continuing for time T, and o (4 is

sufficiently small so that

O(_ i._ 0 as A_Oo
A

(3)



q

q,-

O

where

Expanding both sides of (3) in a Taylor series and neglecting higher

powers of A, we obtain

£ (c,T) + _ ,%+ o(,%)= rain (c,w),%+ f ,T)
w

+ G (c.w) " _ac_f '%+ °(_) 1

J
af

a__f is taken to denote the M-vector with componentsac "

Then subtracting f (c, T) from both sides of (4). dividing by A ._._d

letting ,%--_o, we obtain finally

8"_" = rain (c, w )
w

(4)

0 where f (c, 0) = 0. (5) is frequently called Bellman's equation and

is fundamental to dynamic programming theory, For purposes of

actual digital computation, it is frequently better to use the discrete

approximation suggested by (3):

f (c,T +,%)=rain _F (c,w) _- f (c + G (5_w) ,%,,T)_

w t. J
where T = 0, ,%, 2,%, .... ; ,% "small. " The solution of (6) requires

the simultaneous tabulation of two sequences of functions of one variable,

routine problem for a modern digital computer -- the numerical solution

is sketched below:

(6)

0

Numerical Solution:

To formulate the numerical solution of (5) subject to

f (c,(_) = 0, we note that f (c, T) is known to be zero at the points

3



©

c = + k5 for T- 0, where k= 0,1,2 ..., K and 5 is an arbitrary
af

"grid" size. Further, _ vanishes identically at these points

sincecdoes not depend on T. F (c,w) is then tabulated atc-- kSand

w = + mA., where m- 1, Z,...,lvi andAis another arbitrary grid

size. The smallest of these functional values together with the

corresponding minimizing value of w are _h_ d,!, ,,,,,_,_'d ,m,i _ ir

tabulated for k -- 0, 1,..., K, This yields an approximate value of

8f
a-"_ at T = 0, c = k 6_. Approximations to the function f (c, T) for

T = h are then obtained by

f (%h)- f (c, O) + h P (7)

which represent the solution at the points (+ k 5, h). Approximations

to the derivatives of f at these points are then given by

5
of (kS_,h)

¢

_C
- (ks-,h). (8)

Iteration is then performed by repeating this operation at T = 2 h to

obtain f at the indicated c values. The calculation proceeds until f

together with the optimal "decision t' values w are determined at all

the grid points of the c-T plane as desired. This numerical formulation

of the solution to Bellman's equation is from i_. Kalaba, Computation

of Optimal Control (Academic Press, New York, 1962.).

O

Additional Constraining Relations:

Bellman (loc. cit.) illustrates incorporation of side constraints

by employing Lagrange multipliers. For example, in the preceding

problem whose solution is given by (5), we suppose that an additional

constraint

at m k (9)

4



0
is also required in the minimization. We formulate this with a

Lagrange multiplier k by attempting to minimize the functional

T

subject to the conditions

x(o) = c

_--m; 0-_ t--- T-

(I0)

(11)

0

As before, we write

f (c_, T) = rain

W

sO that for each value of k,

f (c, T +A)= rain IF (c, w)
L,

- kh (c_,w)+ f (c + v_Z_,T) ] (IZ)

which is solved as before, k is then varied until the original constraint

is achieved. Additions/ constraints are treated in analogous fashion.

0
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APOLLO NOTE NO. 214

DETERMINATION OF BIAS

IN THE CLOCK RATE

L. S. Lustick

16 June 1964

Purpose

The purpose of this note is to indicate how well a bias in the

range-rate can be determined when operating in the "three-way mode. "

O

Introduction

Consider a transmitted signal originating at a particular

station and received at a different station. The clock standards at

the two stations can have a constant difference in rates as well as

random noise. The purpose of this note is to indicate how well the

unknown bias can be determined.

Method

Consider tracking the LEM while it is on the lunar surface.

If there are no station location errors or uncertainties in the position

of the LEM or the orbit of the Moon, the variance in the estimate of

the bias would decrease directly with the number of measurements as

shown in Equation (i).

Z
20-

Z meas.

°-bias = N (I)

where

O-bias =
standard deviation in bias

rheas.
standard deviation in measurable

O
N = number of measurements



O

O

For o- = 3 cm/sec, and for samples each second for an observationmeas

period of 30 minutes, the standard deviation in the bias is approximately

0. 1 cm/sec. This number is, of course, considerably less than the

random noise in the measurable (3 cm/sec.)

More realistically the accuracy in the determination of the

bias in clock rate is limited by uncertainties in station location, and

LEM position and velocity.

A run on the computer was made consistent with the following

a priori knowledge:

Standard Deviation in Station Location = 30 meters in each

component.

Standard deviation in LEM Position = 1 krn in each

component.

Standard deviation in LEM velocity = . O1 meters/sec.

in each component.

Standard deviation in measurable = 3 cm/sec.

The reference orbit was selected as the nominal Moon orbit

and range-rate tracking from Madrid (the transmitter) and Ascension

(receiving only) was employed.

0

Re s ult s

For the observation times considered (I/Z - 2 hours) one would

not expect any updating in the position errors as the observation occurs

over a very small orbital angle. The following table shows the standard

deviation in the determination of the bias as a function of the observation

interval as determined with the computer run.

Z



O

Observation Interval - rnin.

I
Standard Deviation in Bias -cm/sec. I

i
I

3O

.316

60

• 309

I

9O

• 305

IZ0

•302

The accuracy in the determination of the bias in range-rate

is limited to the above values, primarily due to the uncertainty in

velocity of the vehicle tracked. Tracking of the command module

indicates that it could likewise be used to determine the bias to about

the same value as indicated above.

O

Conclusions

The determination of the bias in the range-rate measurable

(three-way mode) is limited by uncertainties in station location, and

vehicle position and velocity, but can in short times be reduced to the

errors resulting from these quantities. The resulting error in the

bias is about 0.3 cm/sec, or one-tenth the error in the random noise

component.

O



Thc Bissctt-BcrmanCorpotation 2941 Ncbraska Avenue, SantaMonica, California EXbrook 4-3270

APOLLO NOTE NO. Z15 H. Engel
18 June 1964

ABILITY OF MSFN TO MONITOR LEM

IN POWERED FLIGHT, II

Computations have been performed using reference LEM ascent

and descent trajectories to determine if various increased gyro drift

rates can be detected by comparison of MSFN radar data with telemetered

on-board system data, using three MSFN radars.

It appears that pitch gyro degradation can be detected easily,

but practical detection of yaw or roll gyro degradation is less likely.

©

Derivation

As in Apollo Note No. Zll, we choose the x, y and z inertial

dlrections as the initial up, down-range and cross-'range directions.

The platform gyro axes are in the x', y', and z' directions, which are

initially aligned with the x, y and z directions. Denoting the unit vectors

in these directions simply by the letters, and the angular velocity vector

of the stable platform by_ , we have

_i_'+_z= Y' + _3 z'

and

_a = _XX a = _3y, _Z zs

y' - /Z_y' - f_l"-f_3_'

_. - _Z×-, -Qz"-f_y'l

since the drifts are about the actual gyro axes.

../ •

'/



In the particular case in which there is a drift only about one

axis, these equations simplify, and we find the following results. For

a drift about x',

X I = X

y!

Z l

_I t= ycos 1 t- z sin

= ysin _it+_-cos _l t

For a drift about y',

x' = z sin 2t + x cos _ Zt

©

ym = y

Z' = z COS -__2t -X sin_zt

For a drift about z',

x' = x cos :_St - y sin _3_

' y' - xsin_3t+ycos_3t

Z I ---- Z

A drift rate of I00.0 meru corresponds to an angular chanEe of

less than 2.degrees in the boost time of about 400 seconds, so we may

use small, anEle approximation, leading to

2



I X w -- X

y' = y - z _i t

z' = z + y_l t

x! = z_zt + xy' = y

z' = z -x_zt.

0
x' = x - y_st
y' +y

Z I Z

Now, if the stable platform did not drift, the thrust accelerations

would be ax, ay and 0 in the x, y and z directions. If the platform drifts,

these accelerations occur in the x', y' and z' directions instead.

Denoting the resultant errors in acceleration in the x, y and z

directions by _ ax, 6 ay and 6 am, and letting a be the thrust acceleration

with components ax, ay and 0 in the x', Y' and z' directions, we have

a = a x' + a y'
x y

6a = a- x-a
x x

= a x'. x +a yl . x - &
x y x

= ax+ay st-a x



Y y

= a x' • y+a y' • y- a
x y y

= -a x _3 t

6a = a.z
z

©

= a x t • z + a y' • _-
x y

= a _ -ayx Zt _I t

for constant drift rates about the x', y' or z' axes. Since the angles

of rotation are small, these angles may be added, so the above

equations m-_y be used for drifts about more than one axis.

Next, let us determine the erroneous velocities that result

from gyro drifts, since the MSFN monitoring can detect only velocity

errors. Typically, we have

t.

6v k (ti) - 0ja I dt

in which @. is due to the normal drift rate, _o' from 0 Zo tl, and

J f'_

a hi,her7 rate _i.2 from tI to t2. Then, since

oj(ti)= oj(tl).+ j(t-t l) . t__h

we find

6 Vk(ti) ='6 dt

t.

joVk(tI).+ oj a_

4



•5 Vk(ti) =

t.

6Vk(tl) + 0J(tl) _0 _

t°

a,_ dt+_! _0 _
(t - tI) a_ dtJ

= 8vk(tl)+ Qj(h) " J.i'1a_dt +Q_ ta_ at - :i a_ atJ

t I itl

The measurable Mx(ti) is

Mx(ti) = 6Vx(ti) + nxi

©

in which nxi is the noise in the radar measurement of velocity. The

standard deviation in the estimate of _3 is o-3, where ..

0-3 = "N 'Z

,.Z
i= 1

2
O--

X

8Mx(t I + i)

8_ 3

for measurements at one second intervals, but

tl+ i tl+i

@Mx(ti +i) = / taydt- tl_ I aydt
a_3 tI

so we may evaluate o-3•

a.

The simplest case to consider is one of constant acceleration •

In this case we find

5



so

aMx (_i +i) a Z

1

% o--
x

1/z

V 1
a _-" i4

x i=1

llz

O a( )i12Zo-
x

for N large.

O For a false alarm probability of 0.01, a detection probability

of 0.95, and an acceleration of 5 m/sec, z we find for different values
P

o£ o-x and for different gryo drift rates to be detected

o-
x

3xlO-2m/sec

_'_to be detected

I00 meru

iooo

i00

I000

N(sec)

49.

19.

375.

143.

if the normal gyro drift rate is 10 meru.

(
6
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From these numbers we see that drift rates about the pitch

(z') axis, which lead to velocity errors in the Earth-Moon direction,

the sensitive radar measurement direction, are likely to be easily

detected. On the other hand, drifts about the other two axes, which

lead to velocity errors in the z direction will be difficult to detect.

For the ascent trajectory, we find by integration,

t

%1

dt = 0 , O__<t"_ 8

-Zl. i + Z. 606t + 41. Z x lO'4t z + O. 78Z x lO'6t 3

- 0.076 x i0 "St 4 ,8_<t'=3Z5

©
and

t

tay dt

= -16.0 + Z. 606t + 41. Z x lO'4t z + 0.446 x lO'6t 3

= 0

,5Z5_t-_397

, 0 --<t-_8

i. 305t z + Z7.4 x lO'4t 3 + O. 587 x lO'6t 4

- O. 06 x lO-8t 5 , 8-=t-_325

= 615. + 1.303t z + Z7.4 x lO'4t 3 + 0,554 x lO-6t 4 , 325__t-_397

for use in evaluating o_.

/
Having 0-5, the standard deviation of errors in the estimate of

_3' we may find the probability of detection of a bad z - axis gyro for

7



each value of tI and N for a fixed false alarm probability. We are

considering the radar measurements to contain a Gaussian random

noise, so the estimates of_ 3 have a Gaussian distribution. Using

the normalized Gaussian distribution

6(_) - l exp (-_zlz),

we h_ve that the probability of false alarm, i.e., the probability that

a normal gyro drift rate of i0 meru will result in an estimated 12 3

CO

Pfa -/. _Cg)d_

_'_T- 10

%

0
for 0-3 inmeru.

If we fix the probability of false alarm, then the above

indicates threshold, _T' above which an estimated valueexpression

of _3 should be considered due_ to gyro failure. Then, the probability

of detection for any value of _3 greater than I0 meru
is

CO
/-

°3

A similar computation may be performed for the detection of

gyro errors about the other two axes, but the computation is complicated

bythe fact that drifts about x' and y' are both reflected only as errors

in velocity in the z direction. "We have

f ., ,

8



t. t

/0 J06Vz(t i) = a _ tdt-x Z

6 vz(tl)+ 0z(tl)

t.

_1 aX

t I

t dt

t dt -@l(tl)

t.

f'
tI

a

y
t dt

s 1

+ _Z ax t dt - t1

L_I _i

a dt
X

©

/% I 1 ,

- _L I a tdt-t a dt , t__t 1
y i y

" The measurable Mz(ti) is

Mz(ti) = 6v (ti) +z nzi'

involving both _I and _ Z" This results in a complicated problem

to determine false alarm and detection probabilities. A simpler

p rob_m is to treat _i and _Z separately, in each case assuming

that one is known a priori. This will give an optimistic estimate

of the number of observations necessary to obtain given probabilities

of detection and false alarm. We have

t

dt = " 3.45t , 0___t'_8

9



dt =

°

i0.73 - Z. _zt + 13.8 x lO'4t z + O. 893 x lO'6t 3

+ O. ZZ x lO'8t 4_

if

,8___t -=3Z5

-149.7- 1.237t - O. ZZ8 x lO'4t z + 0.895 x lO'6t 3'

- t4+ n _ 3Z5-ct.= -_97.... x!O 8

and

- 1.725 tz ,O--t-=8

© = -45. 1 - 1.06t 2 + 9. 19 x lO'4t 3 + O. 670 x lO'6t 4

+ O. 176 x lO'8t 5 ,8_t-=3Z5

= 14,500 - O. 619t z -O. 153 x lO-4t 3 + O. 670 x lO'6t 4

+ O. 176 x lo'St 5 ,3Z5 _t-=397

For _Z only %ve use

8Mz(tlt i)

z

and for _i only

tl+ i tl+ i

= Jt I t ax dt - tI _tI ax

We liSe

(:It

i0



aMz(t I + i) aMx(tl+ i)

Also,

Z
o_ =

Z
o-

z

)_. aMz(t i + i)

i= i _LZ

©

and

Z

Z
o-
z

N

Z
i= 1

aMz(t I + i) "_Z

J

These computations have been performed on a computer for

tI equal to 0, I00, 200 and 300 seconds, and for ikr up to 200. The

resultant probabilities of detection for Pfa equal to 0.01 and equal

to 0. i0 are plotted in Figures 1 through 6. in Figures 7 through

13 these results are combined with the results of Bissett-Berman

Apollo Note No. Zli to show the errors in velocity that exist when

the probability of gyro failure being detected is 95_0. As indicated

earlier, pitch gyro degradation is quickly detected, but degradation

o£ the yaw or roll gyro is difficult to detect.

The probability of detection of gyro drift rates has also been

computed for the deboost portion of the LEM descent trajectory, using

ax = .8 7. 15 x 10"3t

ii.2 + 4.38 x 10"3tay = .8 + i. i0 x 10"2t

,0 _<t -=150

,150 _<t-=3ZZ

,0 --<t_150

,150__t-=3ZZ

a = 0
Z

ii



Again, the results shown in Figures 14 through ZO indicate

that pitch gyro degradation is quickly detected, while yaw and roll

gyro degradation are much more Idifficult to detect.

©
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APOLLO NOTE NO. 216

MSFN CONTROL OF LEM,

PRELIMINARY ANALYSIS

E. Cortina/

G. Floyd
18 June 1964

I. Introduction

This note presents a preliminary analysis of the capability of

the MSFN to continuously guide and control the LEM during powered

flight. The control system assumed for the analysis is based on

Doppler measurements of the LEIVf velocity, a direct up-data link

to the LEM autopilot and control of the roll angle by on-board equip-

ment or the pilot.

The destabilizing effects considered are transmission and

computation delays and loop gain variation due to navigation by a ....

velocity-to-be-gained principle. A/so considered, are the effects

of autopilot drift, thrust axis misalignment and velocity measurement

errors.

Subsequent notes will treat the effects of autopilot lags, a

human operator in the control loop, and roll angle control from the

MSFN.

2. Description

Guidance of the LEM from the MSFN is based on control of

the thrust orientation to produce a net acceleration in the direction

of the instantaneous velocity-to-go. A control system for the

execution of this guidance rule in the presence of significant time

delays is shown in Figure i. The indicated operations at the MSFN

and LEM can be briefly described.

MSFN

I. Computation of the LEM velocity every second from

Doppler data. Smoothing or use of telemetered data

is not required.
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.

Prediction of the velocity change in the time delay interval

by continuous integration of the commanded acceleration.

Computation of the instantaneous velocity-to-go by comparing

the predicted velocity to the reference velocity.

e Generation of the control commands, in terms of acceleration

if the Lh/IU is operational and in body axis rates if the rate

gyro autopi'lot is used.

©

e Command of "hold present acceleration" when time-to-go

is six seconds and thrust cut-off at tirne-to-go equal zero.

The purpose o£ the "hold" command is to avoid excessive

aCc'eleration commands as time-to-go approaches zero.

LEM

i. Astronaut and/or AP_A controls the roll angle.

ZO Control ol 1;h_,ust magnitude by means of an integrating

longiZudinal accelerometer. (The MSFN can control the

long4Zudinal velocit 7 in lieu of the accelerometer).

3. The autopilot accepts and executes the MSFN commands.

3. Re sults

Stability

Analysis of the control system indicates that potential

instability occurs only in the vicinity of time-to-go equal zero (end
.,

3
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of powered flight). This is the expected result of navigation by a

velocity-to-be-_ained principle and can be eliminated by stopping

closed ioop control a few seconds before time-t0-go is zero. A more

significant result is the elimination of the destabilizing effects of

the time delays by the relatively sinaple prediction scheme. Although

the system representation assumed zero •autopilot lags and perfect

l_.nowledge of the time delays, the result still implies that adequate

compensation can be provided without excessive complication. The

basis for the generalization is twofold:

(i) It is the uncertainty in the knowledge of the time de-

lays rather than the absolute magnitude which creates stability problems

since computing capability permits accurate prediction. The time

delay in this control system is the sum of propagation and computing time
-5

which equals about six seconds. However, the uncertainty is only about I0

sec which should be negligible at the system frequencies of interest.

(2) The complexity of the prediction technique does

not increase appreciably when non-zero autopilot lags are considered.

Prediction on this basis requires determination of the convolution

integral of the command acceleration with a predetermined estimate

of the impulse response of the autopilot.

Summary of LEM Velocity Errors at Thrust Cut-off

The error sources considered were drift in autopilot rate gyros,

and longitudinal accelerorneter, thrust axis misalignment and noise

on the velocity measurements. Except for the thrust axis misalign-

rent which was treated as a bias, the other error sources were

considered random, Gaussian distributed, uncorrelated and with

zero mean. The standard deviations assumed are noted.

i. Measurement Error ov = 15 ft/sec.

Z. Autopilot Drift _w = 0. Z°/sec.

4
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4.

Accelerometez Drift o- : i cm/sec.
a

Thrust misalignrnent bias, 0 = 1°
m

Z q'. 04 ft/sec, z

©

Velocity Errors Normal to V---o.

o-

Liv v- = 3.5 ft/sec.
ev 3V_

r = total delaytime = 6 sec.

T O = total powered flighttime = 400 sec.

= 8 ft/sec.

iv = a.o-- T
w w

o- = Z3 ft/sec.
v.h

Velocity Errors Parallel :o V---go.

O'vp = (;a _ = .8 ft/sec.

= Z0 ft/,sec.

4. Analysis

Four independent equations describe the operations of the

control system in terms of physical processes. These are:

Measurement:

where:

Vm(t) = _t.?l) + ev(t)

measured velocity

(1)

V(t.rl)= actual LEM velocity delayed rl sec.

5



"4

r I = one way propagation delay plus one half

the velocity computation interval.

r I = 1.5 +.5 = Z. sec.

ev it)

Prediction:

= Noise on the measurement in ft/sec.

t

_(t> = v=it>+f (_
Z-T 1 -r 2

c(x) +_) (z)

O

w/fete:

Vp(t)

m

A
c(t)

= Predicted velocity

= Acceleration command

l

u

= G rarity

TZ = One-way propagation plus
0

computation time

T z = 1.5 +Z. 5=4 sec.

with

Guidanc e:
T o-t-r Z

(3)

I_c(t) i = a (controlled by the on-board system)

where:

/-'h

N

Vg ° = Initial velocity-to-go "

6



Control: Neglecting autopilot time constants,

V(t) = _ (t._.z)+ _"+ e"(t)

where:

(4)

m

ea(t) = Execution errors•

©

LEM velocity.

Substitute (i) and (Z) in (3).

m N

Ac(t)+ g =

Using (4) in (5)

t

• t._.1-7 z

v---Tt)+ v-yt--L
T -t

O _ /= ea(t) + o't" Vgo " ev(t-vZ ) + ea(x )

t-71 -rz

dx

(s)

(6)

Equation (6) can be simplified by the following substitutions.

-- t + v-(t) (7)v(_l_ _o _o
A

7 = 7 l+Ty.

m

ev(t..r2) can be represented by ev(t) since it is a stationary

random variable and only its statistical properties are of

intere st.

7



Subs;ituting into (6)

"- V (t___L - 1.Ov (t)+ To.t = ea(t) (TO
L

The solution of (8) is given by (9)

t

t-T

(8)

_(t) = (T O -t)

t

0 °\(x)(To-X) z

(9)

Equation (9) relates the LEM velocity error, --v--_t) , to the measurement

and execution errors.

O
Combining (9) with (7) yields the complete expression for the

LE_/_ velocity.

Ta(x) 1t --

V--qt)= Vg o T + (To-t) To_X)z ev(x) ea(x)d ax
( X-T

(I0)

. Calculation of Velocity ]Errors

M

Velocity Errors Normal to Vg o, v/.

Autopilot l_ate Gyro Drift.

From Equation (9)
t

: }ew(x) 1 d

v.£ w(t) = (T°-t) _ (T°-x) + (To "x)z x-r ew(Y)

ew(x) = acceleration error produced by gyro drift.

Cx

8



since w is small compared to x over most of the range

o-_x-_T__
0

X

ewcy ) dy = _ ew(x)

X-T

and since

©

i 1

To-X (To_X) z
except as (T O -x)--_r

the contribution of the second integral to v uw should be small.

t

_" "/0 ew(x)
V_kw(t) = (To-t)

(To-X)
dx

Thus,

ew(x)

where:

a ----

[ V±w(O ]

X

= a J w(y) .dy

0

J I 'Ac(t) and w(y) = "gyro random drift rate.

= (To-t) (To.X)

X

-0

9



t

' !/0_[v:w(_]=(To-_2 E [ ew(_I)_w(_z)]

(To'x I)(To-x z)
dx I dx 2 (ll)

E [ew(xl) ew(xz)] = J0 0az m w(yl)W(yz)] dyIayz

E [W(yl) w(yz)] = o-z• w 6(yl-yZ)

©
where:

6 (Yl-Yz) = Dirac Delta function

_'-.[ew(xl)ew(x2)] = (a°-w)

rnin (Xl,XZ)

/ '
in(x I,x z)

• :_(yl-yz)aYlayz

%.

Z
0<_Xl_X z

= (_%)2x z

Substituting into (II)

IO



= (a_)z (TO .t)Z

0x z

z )]_'(aE V Lw(t - _w)z(To-t)z Zt + ZT
O i ][ 12h_ (1,t/To)+T o in (1-,/T_

The error at t= ti= To-7

O

sec. z 2° e T O 'For a= 15 it/ ,o- =. /s c., =400 sec., _-=6 sec.
W

Z
E [V Lw(tf ) ] = 4O0 (ft/sec)_z

and the standard deviation of v2_ w is,

o-v_Lw = Z0 ft/sec L

The maximum error that can be accumulated in the open loop

portion of the thrusting phase occurs when drift rate remains constant

over the last 6 seconds.

T

/0V.L.W = a wt dt

aw 7Z

--- - Z

= .9 ft/sec. 11



Measurement/Error, v inn.

t

ev(x)

Vim = (T o -z).]Or (T°'x) z
dx

-[_m<,,]- _To-,,
t

(T o" x)z
0

dx

- 0 since ev(x) was assumed to havezero mean.

0

t t

v. 'J01o ov,x,
, (To-x)Z(To-Y) z

[o I 2E v(x) ev(y) = ev 6 (x-y)

.t 2

v2 /o °v• . . (To-X) 4

E

2

E m .,I
(To-t) 3

,].T o

At t = ti.,

IZ



i

IV'lm(tf " I ev
E Z

=

and w

= 15 £t/sec. (standard deviation ol the velocity measure-

ment error for the out-of-plane component).
-- 6 sec.

Thrust Axis Misalignrnent, e O"

e@_ a 9 assumed to act in a constant direction

0
t X

v/.o= (To-t) To-X ) + -(To"x)z x-T

t (T°-t) in (l-t/To)
v L@= a@v To -r

at t= tf

V_Lg:=ag-[1 +ln-/To] '

For a= 15 it/see, z, 9= 1°, T = 400 sec.
0

v.hgl = 8 ft/sec, at t - To-7

The error accumulated in the open loop thrusting phase is

given by

V l0z = agr -- 1.5 ft/sec.
13



, #

Total Error, v_L: up to t = To- r

2 v2 vg +E

©

#

--'_'480(ftlsec)2

J 1O'V 1 • .LI : 22 ft/sec.V

• Total Error, v L , in the interval To-t-_t__T °

v 2 v 2

3_ (ft/sec) 2

_v-h 2

Total Error, v.L,

: i. 7 ft/sec.

at engine cut-off

O'v_ : 22 ft/sec.

Velocity Errors Parallel to VXo , Vp

The only error considered in estimating

in the on-board accelerometer.

t

.v = dx
P(t) a(x)

Vp is the random drift, a(t)

14



t

t t

Z
Qq 6 (_-y)_ dy

#

Z
= o- t

&

Z
lot o-= .04 ftlsec.

a

o"vp = _ _ =..8_:tlsec.

0

15
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APOLLO NOTE NO. ZI7 L. Horowitz

ZZ June 1964

LEM ASCENT GUIDANCE

Introduction

• In a preliminary investigation of LEM guidance through

optimum lunar ascent, we have used the results of MSC cofnputer

runs to infer thrust program control for small excursions about

the optimum ascent trajectory. The optimum trajectory itself was

obtained from MSC's computer program, in which the optimum thrust

program for minimum fuel lunar ascent of the LEM is obtained, taking

into account variations in mass of the LEM and in the Moon's gravitational

field. Small perturbations (of the order of I_0) were then separately

introduced in altitude (A), flight path angle (7) and velcity (V) respectively,

and new "perturbed" optimum trajectories determined from additional

MSC computer runs. Linear interpolation between the nominal and

perturbed optimum trajectories was then performed for each of the

perturbations to determine the partial derivatives of the commanded

pitch angle (@) with respect to A, 7 and V respectively. It was found

that for small errors in A and 7, very little change in 0 is required

until most of the optimum trajectory has been negotiated, at which

time large corrections and strong instabilities occur. For velocity

errors ho_v ever, large corrections are required at first, diminishing

with time until instabilities occur near terminal acquisition. These

results are shown graphically in Figures i, Z and 3.

Description and Analysis:

The optimum LEM ascent trajectory as obtained from MSC's

computer program begins with an 8 second vertical rise with subsequent

transfer into "optimum" (i.e., minimum fuel) ascent. The clock is

reset to zero here, at which time A= 191 ft, 7= 90 °, V= 48 ft/sec.,

and @ = 37 ° (nominally). At terminal acquisition (time = 389 sec. ),



©

A = 50,000 ft., _ = 0 °, V= 5,500 ft/sec., and 0 = -3.6 ° . Three

separate computer runs were then made (courtesy of MSC)

incorporating small perturbations in A, _/and V respectively.

In computing the indicated partial derivatives of Figures I, Z

and 3, we tacitly ignored second order effects induced in (say) y

and V when A alone was varied. Separate checks for wider excursions

8O

were arbitrarily made on_- 7 to verify that these effects were indeed

largely negligible.

Terminal _÷_k_1_+_ due to ....... u__:___ =....:............

few seconds of ascent were large and oscillatory and are qualitatively

indicated by the broken extensions on the attached graphs. We have

interpreted the zero crossings of Figures 1 and 3 as meaning that at

those particular phases of the ascent, no change in @ at all (for a small

error in A or V) results in "bes_' satisfaction of the terminal constraints.
8@ • 80

It is noteworthy that -_-, S-_- increase with time while 8__@_08Vgoes to

zero at 300 seconds (A = 46,000 ft) and then becomes positive. The

velocity errors considered here were in the y component.

it can also be seen that 8___@_@becomes unstable some 40
87

80 8@

seconds before --_ and 8---V'suggesting that errors in flight path
t

80
!

angle should be corrected sooner. The fact that I I!_V- diminishes to

zero (until t-- 300 seconds) need not necessarily mean that @ corrections

for V errors should be postponed, since trade-off between over-all

fuel expenditure and "best" realization of required terminal conditions

cause s complications.

Z
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APOLLO NOTE NO. 218 G. Siska/

L. Lustick

Z3 June 1964

1.0

PREDICTION ACCURACIES FOR CSM ORBITS DURING

VARIOUS PHASES O!;" THE APOLLO MISSION -

PACIFIC OCEAN INJECTION FROM

PARKING ORBIT # Z

i .

INTRODUCTION

.©

This note examines the accuracy with which various free-flight

phases involving the CSM can be predicted for a sample Apollo mission.

The particular Apollo mission selected assumes a 90 ° launch

azimuth from Cape Kennedy into the Earth-Moon plane (28.5 ° inclination)

with translunar injection in the area of the Pacific Ocean from Parking

Orbit #2. This results in i Moon intercept 72 hours from injection,

when the Moon is descending at a declination of 15 ° (longitude 57°W).

Boost for Earth return from the lunar parking orbit occurs at

i01 hours after translunar injection with a 70 hour return flight in

the Earth-Moon plane. Re-entry occurs to the East of Africa with a

possible landing in Australia on a northeasterly heading. The return

mission has not been evaluated beyond the re-entry position of 400,000 ft.

altitude above the Earth's surface.

Z. 0 EARTH PAR_KING ORBIT

Z.I Reference Orbit

-- i00 n. mi. circular orbit, inclination Z8.5 °

(90 ° launch azimuth from Cape Kennedy)

insertion, latitude 25.5°N, longitude 54.5°E

translunar injection, latitude Z°S, longitude 146°E

k



Z.Z Trackin_ Data

no a priori data on insertion condition.

Ship No. 1 located 23.7ON and 47.5°E with station

location error and a priori estimates of the error

200 meters North, 200 meters East, 20 meters

altitude. No location error in other stations.

all stations have unknown range and angle bias

and sample at one observation point per second.

©

m

measurement errors; range 15 meters, angles

(x, y mount) O. 8 milliradians.

no time sharing in the range mode is assumed

amongst the tracking stations

both the time at the end of the tracking interval and

the duration of the tracking interval are shown in

Tables 1 and 2.

2.3 Cases

2.3.1

2.3.2

No venting --This case provides a comparison with

the venting case. In this case there is no uncertainty

in the gravitational constznt, }_.

Venting -- Simulated by treating the gravitational

constant _ as an unknown orbit parameter -- this

implies the venting acceleration is an unknown

constant radial acceleration--a priori information

Z



on _ was defined as 0.216 x i0 II m3/sec, z (corre-

sponding to O. 05 cm/sec. 2 for a radial acceleration) -

whenever the prediction accuracy for _ becomes an
ii

order of magnitude better than .2 x i0 , we are

predicting the venting acceleration well enough to

reduce some of its effect in the orbit determination

problem-to forestall this situation prior to the addition

of each station's tracking data, the information developed

on _ was dropped and only the a priori value was used.

©

2.4 Results

Table 1 shows the prediction accuracies for the orbital elements
%

at the time, t, that the vehicle leaves the station visibility circle (5°

elevation angle). These accuracies are based on the cumulative track-

ing data from parking orbit insertion up to time t and represent, in

terms of the t = 0 coordinate system, the square root of the diagonal

elements in the covariance matrix.

The l°d_S values are simply the square roots of the appropriate

diagonal elements in the covariance matrix and are intended to be

interpreted as simple descriptors of theposition and velocity error.

Table 2 shows the values projected to the time when translur_r

injection occurs (t = 146 rain. ).
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3.0 TRANSLUNAR PHASE

3.1 _eference Orbit

-- transiunar injection - latitude Z°S, longitude 146°E

at bu'_'nout

burnout conditions - velocity 35,500 ft/sec, at ZO °

attitude to local horizontal - approximately 100 n. mi.

altitude

inclination 28.5 ° to Equator and in the Earth-Moon

plane

© 3. Z

descending intercept of the Moon at Moon

declination of +15 °

Tracking Data

all stations use range mode (time shared) and two

angles (x, y mount) --one observation point per second

•all measurements with bias -- a priori on range bias

of i00 meters

no a priori on injection condition

measurement errors, 15 meters range, 0.8 milli-

radians each angle

tracking tim_ intervals (t = 0 is injection time)



Guam

Hawaii

Golds tone

Guaymas

Canberra

0 6 i0 15 Z0 ZI0 Z40 rains.

©

Results

Prediction Accuracy of Vehicle Position and Velocity

at t = _0 minutes after injection

x = 2Z meters

y = i2 meters

z = 42 meters

x = .014 m/sec.

_r - .016 mlsec.

= .026 mlsec,

l_'v_SPosition Error = 49 meters

RMS Velocity ]Error = .036 m/see.

3.3. Z Prediction Accuracy of Perilune Radius

Time After Injection

Z0 rnin.

60 rain.

120 rain.

2 I0 rain.

480 rnin.

Perilune Radius

6640 meters

346 meters

116 meters

103 meters

61 meters
7



Prediction accuracy of position and velocity when vehicle

is at the lunar sphere of im/luence is presented in Section 5.

u LUNAR. PAP, K/NO ORBIT

4.1 l_eference Orbit

80 n. mi. altitude circular orbit in Earth-Moon

plane (28.5 ° inclination)

,j1 /

J

.. '_

start position of circular orbit behind Moon and

on the Earth-Moon line

4.7

starting time 72 hours a_te_ translunar in_ection

with sublunar point 0_ 15°N latitude and 57.3°W

longitude ..

Tracking Data

-- 3 way Doppler mode- one observation point per

second with measurement error o-= 3 cm/sec.

tracking interval (t= 0 is start of circular orbit)

°
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Bermuda

t (rain)

I |

I i
I I

i I
I

I .

i
!

i I
1 i
i I

l
I

1 I
I

I
t

I w
Z5 97

lZZ

Z
i

3 4 5 6

. I !

i I
!

I
I

I t

i i
I i
1 l

I i

i
i I

I l
i I

I !

I 8
i J

I I
! !

3z3
3

I i

I i

i !

I I
!

!
!

I
I

I
I
: !

i I
!

!
I

!

I
I

_91 463
6 4

I °
i I
! i

I I
I

!

i
I

I

I !

.I i
I

I
I

!

I
I

513 585;

_8 61

4.3 Results

--- The prediction accuracies are shown in Table 3 and

represent the square root of the diagonal elements in •

the covariance matrix as before.

The upper part of the table pertains to tracking during

the first orbit for i0, Z0, 30, 40 minutes of tracking with

vehicle positions corresponding to t = 36, 46, 56, 66 rain.

after start of orbit. For these tracking intervals the

right side of the table shows values projected to the end

of the first orbit (t = 122 rain. ) at which time the LEM

is expected to start its descent trajectory.

The lower part of the table shows values at the end of

each of the first five orbits with projections to the end of

the 14th orbit (approx. the time of rendezvous with the

LEM).
9
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5.

5.1

TI%ANSEAP_TH PHASE

Reference Orbit

transearth injection approximately 80 n. mi. altitude

with 8Z50 ft/sec, in the Earth-Moon plane (Z8.5 °

inclination) at i01 hours after translunar injection.

injection position in Earth-Moon plane at an angle

176 ° from where the E-M line enters the Moon's

surface.

sublunar point 7.9 ° N. latitude and 118°W longitud_

flight time to LSOI is iB hours -- to re-ent.ry 70

hours with 6 ° dive angle.

5.2 Tracking Data

-- B-way Doppler and/or time shared range mode with

first observation 20 minutes after transearth

injection.

one observation point per second for Doppler

(o-=- 3 cm/sec. ) and one point per minute with

range (or= 15 meters).

no bias on Doppler data - unknown range bias with

a priori o- = 500 meters each station.

a priori orbit has injection uncertainties of 3 m/sec.

in each velocity component and B00 meters in each

position coordinate.

tracking interval (t = 0 is injection time)

IZ



Time (hours)

0 1 2 3 4 5 6 7 8 i0 ii IZ 13

;tone

Hawaii

Canberra

Guam .

Carnarvon

Madrid

l_esults

The results for various re-entry parameters are shown in Tables 4

through 7. It appears that the addition of _ data to range-rate data

does not contribute significantly in determining the orbit. The same can

be said of having a priori orbit information supplementing the range-rate

data.

The accurac 7 with which the vehicle position can be estimated

when at the LSOI is shown in Table 8 for both the translunar phase and

trans earth phase.
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Table 8.

PREDICTION ACCURACY,:c AT LUNAR SPHERE OF INFLUENCE

--. ,i , _ _I ............... i i • ! 7....

Time t

i(rnin.
from

;tr anslunar

linjection)

ZO

60"

IZO

ZlO

480

.59+03

•10+03

.83+0Z

.77+0Z

.47+0Z

Translunar Phase (Time Shared Range Data With Bias)

y(m)

•15+05

.75+03

•16+03

.50+0Z

.16+0Z

z(m)

.Z8+03

.Z0+03

•11+03

.58+0Z

.34+0Z

I
•39+00

•19-01

.39-0Z

.13-0Z

•50-03

.42+00

.ZI-01

i.45-0Z

_.Z6-0Z

RMS

Miss

(-_) (m)

15-02 .16+05

91-03 .78+03

66-03 .Zl+03

56-o3 .1i+o3

38-03 .60+0Z

RMS

Velocity
(m/s)

.58+0O

.Z8-01

.60-0Z

.30-0Z

.15-0Z

ill....

Transearth Phase (S-way Doppler Unbiased)

!Time t

(rain.
from

_ransearth
_nj ection)

60 ':'_:'.

180

300

420

540

660

780

(atLSOI)I

x(m)

•96+03

.59+0Z

.Z4+0Z

.15+03

.IZ+0Z

.89+01

•73+01

iY(m)

•50+04

.4Z+03

. Z0+03

•14+03

!.12+03

73+0Z

.z(m)
m

x(-_ )

.Z8+04 .31-01

1.70+03 .19-02

I

i.  +03 i" 7-03
L. o+03E" s-03
!.37+03 I,.Z6-03

_.36+03 .Z0-03

.iZ+00

.i0-01

1.50-0Z

.35-0Z
zg-0z

22-02

•19-02

RMS

Miss

i(m)

•74-01 1.58+04

.21-01 1.82+03

.13-01 .51+03

.12-01 .44+03

•11-01 .42+03

.10-01 .38+03

!.10-01 1.37+03

RMS

Velocity
(m/s)

• 14+00

. 24-01

• 14-01

• IZ-01

• ii-01

• ii-01

• ii-01

),'C No a priori orbit used at injection position.

Coordinate system - selenocentric for translunar phase and

geocentric for transearth phase - x along radial.to l_SO1, y in

direction of motion, z out-of-plane•

Tracking starts Z0 minutes after transearth injection.
18



The Bissctt-Bcrman Corporation 2941 Nebraska Avenue, Santa.Monica, California EXbrook4-3270

APOLLO NOTE NO. 219 L. Lustick/

C. Siska

Z4 June 1964

IAE-ENTIKY CONDITIONS OBTAINED WHEN APPROXlIV_ATING

THE LUNAR PHASE OF THE EARTH RETURN

ORBIT WITH AN ELLIPTIC ORBIT

1. INTRODU CTI ON

The purpose of this note is to simply record the re-entry

conditions obtained when an elliptic orbit in the lunar phase is used

to simulate a hyperbolic orbit. Primary interest lies in making

comparisons between the present results and those pertaining to the

hyperbolic orbit case which appears in Section 5 of Apollo Note No.

Z18.

CALCULATIONAL PROCEDURE

First, a high eccentricity ellipse (e = .985) was defined in

the lunar sphere of influence (LSOI) with the same perilune position

as the hyperbolic orbit. The orbit was then tracked by the MSFN

from approximately first visibility until 13 hours after injection. At

13 hours the vehicle on a nominal hyperbolic orbit reaches the LSOI

boundary, but in this elliptic case, the radial distance reached is

only 0.6 of the LSOI radius from the Moon and the in-plane angle

traveled differs by about i0 ° from the nominal travel.

The covariance matrix was calculated for various tracking

intervals up to 13 hours and projected to the 13 hour position on the

ellipse. The 13 hour position was now assumed to be coincident

with the LSOI position of the" hyperbolic orbit and the matrices developed

were rotated into an Earth-centered coordinate system. From here

to re-entry the vehicle was defined to travel the same Earth-centered

conic as that which results from a hyperbolic lunar phase. Any

differences in re-entry conditions are therefore a consequence of



the influence of the dynamic difference upon tracking accuracy

between the elliptic and hyperbolic orbit in the lunar phase.

Comparative characteristics of the two orbits are listed as

.follows:

Hyperbola '

ii

Eccentricity

Perilune Radius =

Time to pierce L$OI' =

Time to re-entry =

-Re-entry Dive Angle =

Time Vehicle Occluded

Occluded By Moon =

1.38

1837 krn

13 hours

70 hours

6 ° (at 400,000 _t) -

15 rain.

Ellipse

.985

1837krn

Z8.7 hours

,t

3. TRACKING DATA

All tracking data is the same as listed in Section 5 of Apollo

Note No. Z18.

4. RESULTS

Results for the same cases as appear in the above mentioned

Apollo note are shown in Tables' 1 through 4 and appear to yield dive

angle estimates about 3 to 4 times more accurate than the hyperbolic

orbit 'case'.
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The Bissett-BcrmanCorporation2941NebraskaAvenue,SantaMonica,CaliforniaEXbrook 4-3270

APOLLO NOTE NO. ZZ0

• AN E1AROR ANALYSIS OF

LUNAR-ORBIT COMPUTER PROGRAM, I

B. Murphy
Z5 June 1964

,purpose

The purpose of this effort was to check and debug the program

that calculates the various orbit parameters for a hyperbolic Orbit

(see Apollo Notes No. 8Z and 114).

Dis cus sion

To spot the source of error in the computer program that

initially was yielding obviously erroneous results, the orbit equations

were hand-calculated for the body at perilune. However, before

these: calculations were completed, a programming error was found

that when corrected, seemingly reasonable results were produced.

As a complete check, the hand calculations were finished. As can

be seen from Table I, these hand calculations agree well enough to

confirm the computer program. The errors that do exist probably

lie in the hand calculations. In particular, these are probably due

to recording errors and a random desk calculator error that was

discovered subsequent to the completion of hand calculations. In

addition, the computer does double precision operations (only the

five or six significant figures are recorded in Table i), such that

no round-off error propagates into the recorded numbers. However,

due to the large number of sequential operations, not a negligible

component of round-off error (via random walk process) exists in

the seven and eight significant figures used in the hand calculations.

As yet another check on the computer program, the partials

of x, y, x, and _ were approximated by a perturbation method; i.e.,

first order differences,



@f. f.(a. + Aa i) - f. (a i)
_ .J _. .J

_)a. Aa.
1 l

These are tabulated in Table Z along with the computer calculated

partials using the program outlined in Table i. It is seen that

these agree satisfactorily, at least for small changes in a i. Errors

that do exist can be attributed to large second or higher order partials

that degrade the approximation (the effect of even ordered partials on

above approximation can be nulled by using the mean of the first order

differences for equal and opposite perturbations), or to the fact that

the . Ol second iteration time, for the calculation ol _(ai) and _(a i + _ai),

allows a zero mean random error whose maximum is 8 meters/sec, to

appear in x and y,since x and _ are about 800 rn/sec.
./

These two comparisons, being somewhat independent (although

the perturbation check is not as thorough), provide a high level of

confidence in the computer program as outlined in Table I.

The equations used to calculate the perturbed variables

(_ (ai + Aai)) by means of a computer are Eiven in the Appendix.
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APPENDIX

Hyperbolic Orbit Equations (e> i)

Note: The perturbation method involves a Coordinate t_ans_ormatio n.

Thus, in general, Yo _ 0.

al, aZ, %, as, T',_.

Equations_:

r
o =. al+a Z

(i)

ZE -_ +.a S -
O

(z)

a a5 -a z a 4 ]

n '= (zE)a/z/_

oo.
.. _ro

(3)

(4)

(5)

(6)

(7)

"o

:r
0

a I a4 + a Z a5

ro

(8).

13



sin @o = Hiro/eF_

@o - tan'l _cos

coshF °

iT ir

_Z

)= (e+cos9 0) /_ro

(9)

(i0)

(11)

z_
- r° sin @sinh F ° H o

Fo - tanh'l ( sinhF°)cosh F °

M ° = e sinhF ° - F o

(IZ)

.(13)

(14)

to = Mo/
(IS)

t = to + (60)T (16)

M = tvi

M = esinhF-F (Solve for F)

(17)

(18)

sinh F = (M + F)/e

i/Z

cosh F = (l + sinh z F)"

sin:0 .=
/__H sinh F/(e

_6 - /.
cosh F-l)

'j

(19)

(zo)

(zi)

14



/
cos @ .= (e- coshF)/

l "sinO 1

o- tan "1 _o--'_J

r = HZ/_(1+ecosG)

(e ¢osh F-l) (zz)

(z3)

(z4)

_" = _e sin O/H (Z5)

tan"I (_Z/al)

= (o - _o) + _

(Z6)

(Z7)

X .= ,r. COS _/

• y = r sin#

-_ = . I-I sin_+'_ cos

H
y -= r sin _ + -?- .cos.'_

.Output

(Z8)

(zg)

(30)

(31)

' 15



The Bi_ett-Berman Corporation 2941 Nebraska Avenue, Santa Monica, California EXbrook 4-3270

B. Murphy
APOLLO NOTENO. ZZl : Z5 _'une 1964

AN ERROR ANALYSIS OF LUNAR ORBXT

COMPUTER PROGRAM II

Purpose

As in note I, the object of this work was to check the computer

program that calculates the various orbit parameters, this time for

elliptic orbits.

Discussion
i

As the elliptic orbit program was already yielding credible

results, the only check performed was an approximate calculation of

this partials of x, 7, kand_wrst a 1, a 2, a 4 anda 5viaaperturba-

tion method (first order differences). The program used to calculate

the perturbed variables is included in the appendix.

The initial comparison was performed near perilune. How-

ever, since first order partials of many of the variables near perilune

are approaching zero while the second and larger order partials are

finite, the perturbation method failed to produce a good approximation.

Another check was then performed at 25 minutes after t o • The first

order differences and the computed partials (a la Apollo Note No. 8Z

and 114) for this case are tabulated in Table I. It is-seen that

these numbers agree very well. Even better agreement can be achieved

if the means of the positive and negative perturations are utilized (thus

eliminating the effects of any even order partials).

Because of the excellent agreement of results, it can be con-

cluded that the computer program is doing what was intended with a

large measure of confidence, . _ .
• -, '- "" " L J . , " . ",
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Table I

_j(Aat* a t) •

L + Aa i) -'", J (ai fj(ai)
A ai

,.

i

L, a i
• m ill

x, a 1

Y, a 1

x, a 1

al

x, a 2

Y, a 2
.o

x, a 2

az

x, a4

Y, a4

xJ a4

_r, a 4

x, a5

Y, a5

_, a 5

a 5

Aal, 2 = +103'

gj (Aai' ai) I

Aal, 2 = "103

• 251559 + I

• 14734 + 1

• 12274 - 2

• 284146 - 2
i,! J i

i

.84128 + 0

.8767+ 0

.10298 - 2

• 63355 - 3

Aa4, 5 = +I
i ,,

.191685 + 4

• 7477 + 3

• 12367 + 1

• 160603 + 1

• i

• 57931 + 3

• 17278 + 4

• 9963 + 0

.211303 + 1
. ,,,=,

.251765 + 1

.14778 + 1

.12272 - 2

• 285049 - 2
i H:

Computed 8 f.
J

Partials a a.
I

n __3,,,

.84093 + 0

.8762 + 0

.I0299 - 2

•6335.0 -3

Aa4, 5 + " I

.2516621 + 1

.1475648 + 1

.1227315 - 2

.2845973 - 2

• , ¢ !Ill

• 8411044+ 0

• 8764330 + O.

• 1029851 - 2

• 6335256 - 3

.191669 + 4

.7487 + 3

.12354 + 1

.160781 + I

i |1

•57982 + 3

• 17281 + 4

.9978 + 0

b211533 + 1
i i ||

.1916772+ 4

.7482466 + 3

.1236073+ 1

.1606918+ 1

•5795620 + 3

,1727936 + 4

•9970435 + 0

•2114179 + I

ii i

a I . . , .

a 2 = 0

a 4- = 0

, . ,.a5, = ,'17017200+ 4

= .17524999+ 7. ,,",. .

: "_ : ,:iT:",= ,25"_ 2

f
i

2



A PPENDIX

Elliptic Orbit Equations '(e < 1)

Output: a I, az, a4, a 5, T, M ' / :

Equations.:

(1)

(z)

(3)

(5)

(6)

(7)

(8)

(_ indicates differ from hyperbolic case)

e 2 .

(10)

(a,z zZ) ,/z : ....... ....
r O = + a . ', •

• ' ' ..i . ." ._ ., • ,., . , ... .

:'_ :. q'. "_ ".

2E = a4 2.+ a5 r :;" . .',. '
0 " k. ",, " • - "" " - " " " "

• : ".," . ": ...:.? ." ..

e

N - (IZE[) .......
. '' , . .. :'. .

1 H z " ' ".... '

Cos 0 o = _ (_ - 1)
r o

• a 1 a 4 + a 2 a 5

_rO r ,
O

.H_
0 "

Sin 0 = --
o I_e

O° tan'l sin 0° -= _ -_'= _" "0 --COS 8 o "_

sin0 0 _,,: .., . ,

(II) Sin Eo._ =, ro ''H "" "

(lz) COSEo:i (e+cos0)/t, / : "
• / _. to/:i, ,.:: .._-: '

-1/sin E ° I : :

(13) EO :-': tan _COS EOJ :_':!,.i'..'•' '7• "' ":: ,' ::";_';""

(14) M ° - E o-:e sine o
• ,k o. • • .0. " '

. • .- ,. .

• . . • .

• /'.._. ', .- . .
p

.°., •. '/.,.

• o'.

• i ..,. '' . , , /.,,.

. •...

.; . . .

3

• - .-.i,

...-.



l

o./r

(is) t
,0

(z6) t

(17) M
!

(18)

(19) Sine

(ZO) Cos E

(21) Sin e

(22) Cos e

(z3)

(z4) r

(zs)

(26) P

(ZT) _.

(28) x

(zg) y

(30) 'i

.. , . ,

(31) "k

M
0

- -'-IT-

.: "
• :r

,_, ' -,

t + (T ; 60)
O

= t n !

= E - e sinE: solve fo- ;.

/

= (_- - _)/e

= (I - sin2E) llZ

: (cos _. - _.)//(
/

9 = tan'l ( sinOl, co-"6-_

sin E/( ! e cos

1 -so,.,: E)

,. ,:3ee COn:

r_ for qua,-

H 2
= ---- (1 ,. ecose)

,°

= I• e sin -_/H ii

Xc

6

_:er program
. _It

az]

= (e-e) +p
/

/
/

:, r COB
-. ,.

r sin_

= .__H Bin_.÷_ cos@
r

= * sin_+_cosq,
r

)' , ",,

e

D,L°(.

":!

)

• .-..

, , • , , '." , . . . ,,

4



The Bissett-BermanCorporation2941NebraskaAvenue,SantoMonica,CaliforniaEXbwok 4-3270

APOLLO NOTE NO. ZZZ

THE EFFECT OF CSM TUMBLING

ON ORBIT DETERMINATION

M. Blasgen
Z9 ,Tune 1964

The purpose of this note is to estimate the e£fect the tumbling

of the CSM during unpowered flight has on the accuracy with which

the velocity of the vehicle can be determined.

The CSM, when in unpowered flight, may be tumbling at some

reasonable rate.. Because the transponder is not at the center o£ .

gravity, the velocity seen by the ground radar is contaminated with

a sinusoid as well as noise. In this treatment, it will be assumed

the actual velocity of the vehicle is a simple function of time;
I ,

I

_actual = al + a2t

Then the range-rate received at a single ground station is

j

i_ = a I + art + a 3 sin a4t + n(t)

'where n(t) is bandlimited white noise with a correlation function

which is approximately zero for T = At where At is the sample

spacing, and al, a z, a 3, and a 4 are constants to be determined by

'the signal processing system. In writing the equation for _ it is

presumed thatno phase knowledge of the sinusoid is necessary for

its elimination-- e. g,, a narrow rejection filter at a 4.

The covariance matrlx _or a 1 and a 2 when the incoming signal

is contaminated with white noise _ is well.known:

L

- S .. e.,I , .

: . ;? ," . .
q _

• : : . : . .- _ • .. _. .

. t •

,. . ' . ".
": "" 4 "" •

. ,



Coy (a I, a z) =

2 (2N+1) _
_ +_I)(N+Z)

-6
(N÷I)(N÷Z) At

-6 .12
(N+I)(N+Z) At N(N+ I)(N-t-Z)

where o -2 is the variance of the noise, N is the number of equally

spaced observations, and At is the spacing of these observations.

How are these values affected by the superposition of a

sinusoid, whose frequency and ar_plitude must be determined?

problem is best solved by using the information matrix.

If

N • e

. I : 8,tt. (tj)_ .SI:t (_)
- 0 ap 0 aqCpq _'_ j=0

andS(t)= a 1 +a_t+a 3 sin&4 t _q(t)"

This

then,
N+I

CII = _7

C12 =

N

-_ _ N(N+I) /o- tj = 2_ z 'At
j=0

J

14

a 3

J

C

4tj

#,t

,: ,. ., - . ,.,

.,.

a

,• .



C23

C24

G34

(322

G33

C44

1 Z
cr-

J

a 3 ,

c. j

1 " -

0"

,, , , "

r ".

tj sina 4 tj ", '

Z t.z COS a 4 ':

J

s N(N+I},(2,,N+I):,

6o-

N

• - I _ sin 2
•, --_ __ . a 4 tj

J

2

-TZ, b
j

• " L,. • ,.

(At)z
!. • . .

If the total observation time is large compared with the

sampling intervals (i,.e,, N large)t we can approximate the various

summations with integrals: _ " /

N

Z f(ti ) =_
i=O

(N+ I/Z)At

_(. f (t} dt
1/2) _t

i

can write"

• |

Assuming At = 1 secondt and carrying out the integrations0 we

. . ' . • •

,- , . . " .. .° - .

• , .- . , '.''_ , .; -.. _= . . . .



Cll

ClZ

CZZ m

. /'i/,. .'4

• ... . ...
,,,.. .:-

N+I ....... ' .. ="

O" . / " '-"2""

.. N(N+I)

Zo.Z ,.

,NIN+ I1(ZN+ I)_ "
Z60-

• [ ]-4 1 cosa 4 (N+I/Z) - cos a4/Z:i::C13 : °" z- . ,.a

a 3 .
t

C14 : . .ia.-_ : toe a4 (N+I/Z) - coa a4/Z

,.

i + (N+I/Z) ,in a (N+I/Z) -
, 4

P

, /

1/2 sin a4/_-

- (N+I/Z) co,, s.4 (N+I/Z)

4



C4Z (ZN+I)cosa4 (N+I/Z)+ {(N+UZ)z

..-!N+I),+ cos sin. "T-

sin a4(N+ I/Z)

%4 = "----T
..... 4 a 4`a''

..- . , .%
,, ? . /

a 4
(ZN+I) sinz a4 (N+X/Z) + sin z T

a4 a4 1+ coa T i_ T

- (N+l)

I

1 ]' cos a4 (N+I/2) sin a 4 (N+1/2)C33 : _ N+I-' a4

v" " "

1 a4 a4 ]

, ""_4 COS ='_ s*n .-_ J

.+ , , ,. ,r_ ' . ++

. ". . +..,.. -

". ,,. "
t'"

:: .....-._ . ,.'.."

-, r . ...

• , . . . • ,

J

a 3

+ 2/3

= l/Z ') sin Z a 4 (N+l/2)

+a 4 (N+I/Z cos a4 (2N'+ I)

--_ ,_ _+,+ +:..,_+co, "4

,- . . . .

:: • ." ".. •
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along,

and a3

It is difficult to carry the analytic expressions any further

so at this point the numerical values a4 = 1 rad/sec., N - 30

= Z meters are substituted.

• .. j'

31

465

0. 273

-49.5

465

9455

18.3

-1402

.:.' "- . O. _-73.

': 18.3

-49.5

. _:_.:: -1402

15.5 .-.

. •7.8 "

...." 7.8

18, 000

If we_ partition the C matrix

[
C

, = |

LA 2 ,
1AIZ

A22

where the Ats are P- x 2

then

and

_t Coy (al,,a z)

°.

• . ,•.

/

Pe rfect ,/

Knowledge
of Sinusmd

1l"T6"_

1

' '::: .._5,700"

Perfect

Knowledge . :. _. _: : . .
of Orbit

-i ]

i

, 18.0 O0



, +_, . +,

Now il

C "1 ,, Coy (a 1 0.2 _3 e'4)"-

++ _..

,+

• ,, • . ,.. -

BII BIZ

,,+

BZI 'BZZ

then we know'

BII = (All - A12 A[_ AZl)" 1 = Coy (al, a Z)

• _ o-2

30, 8 460

460 9320

1 -1
U:I'O- "TC4-

-1 1

Imper£ect

• " ,. ' " Knowledge
-1 - " ' " of Sinusoid

° _ .!'

/

If a 4 is changed to I/Z tad/see., and N and a 3 are le£t unchange4

at N = 30 and a 3 s Z meters, then ualng the same procedure we can

calculate: elL " "
I I ••, ,•.

.j, -• . . . • .

BII = . : ; +i:'i+ .. :

• ,; . +

BI i ii ii i .... + r . .
_+I,l -

* See Apollo Note No. 184. " : = r + 1'' ..... :1+ " . " _ "+ " "

i

d 1 m

k

• '+ '+' +:+. * .... • ;.++ i / i: .-+ + .

2

+ m j I " I l q J _ + k I k . q

-. o.

7



We see Bll, which is covariance matrix of a 1 and a h when

a 3 and a 4 are imperfectly determined, is very close to AI'll, the

covariance when the tumbling is known exactly. Thus we can con-

clude that the tumbling has very little effect on the accuracy with

which the orbit parameters can be determined, at least for the values

o_ N, a 3 and a 4 used in this study. A more extensive treatment,

all the orbit parameters and a series of values _or N, a 3 and a 4 ,

require the services o£a computer. _, i,i ' J?i'/',,': i.,} ii!.i::i'i, _ • ,.

/'... , j. ,

• . , , ,::'_.".': :'" , ., .. .. . ". ' .',,..."..:..+.." - - , _. , .

• . , .,.,. ..

" : - "- ,. /. .. - .

. /0

• , . ,., -.. , . - . • . . ,.

. - • • .

using

would

/

8



The Bissett-Berman Corporation 2941 Nebraska Avenue, Santa Monica, California EXbrook 4-3270

APOLLO NOTE NO. 223

MONITORING EARTH LAUNCH

DURING SIV-B BOOST

B. Saltzberg

29 June 1964

INTRODUG TION

The purpose of this note is to indicate the possibility of moni-

toring the SIV-B portion of the boost of the Apollo vehicle into an Earth

parking orbit[

An approximate analysis is presented in this note. The analysis

is approximate in the sense that the only parameter which is assumed

to be uncertain is the pitch rate. This parameter appears to be the

most significant source of uncertainty due to the fact that any drift in

the inertial platform will manifest itself as a bias in the preprogrammed

pitch rate. This note deals with the ability to monitor earth launch in

the sense that it evaluates the probability of making a correct decision

that the pitch rate is abnormal during the boost, based on radar range-

rate measurements.

Specifically we are investigating two probabilities, i) the

probability that the pitch rate (calculated from noisy radar data) differs

from the desired preprogramrned pitch rate due to platform drift and

2) the probability that the difference is due to uncertainties in the range-

rate measurements. The probability that we will correctly conclude

that an abnormality exists when an actual bias is present is defined as

the detection probability, that is, the probability of abnormality

detection. The probability that the measured abnormality is due to

noisy data and we will conclude incorrectly that it is due to bias is

defined as the false alarm probability.

The analysis of these probabilities is based on the following

model and the stated assumptions.



The SIV-B ignites 543.08 seconds after lift-off, and after a

burn time of 169. 077 seconds, has inserted the vehicle into an Earth

parking orbit. During the SIV-B boost, the vehicle is programmed

to follow a pitch polynomial of the form a I + azt + a3t2 . We assume

that it follows this pitch polynomial exactly but with respect to a

reference system with a constant abnormal drift rate, and the object

of this exercise is to indicate if it is possible from the ground range-

rate measurements to efficiently monitor such abnormal behavior of

the inertial system. The analysis is based on the following model:

i. Consider that the range-rate during SIV-B boost is

written as a function of the constants in the prescribed pitch

polynomial, (al, a2' a5 ) and time.

2. From a number of independent measurements of

range-rate, determine the uncertainty in estimating the constants

in the pitch polynomial.

3. Given the uncertainty in the pitch polynomial constants,

due to range-rate sampling errors, determine the detection pro-

bability as a function of the abnormality consistent with a given tolerable

false alarm probability. The analysis is based on the following

as sumptions:

I. There is an uncertainty only in the pitch rate which

corresponds to an uncertainty in a 2 of the pitch polynomial.

2. Range-rate is the only measurable.

3. There is no uncertainty in our knowledge of the required

parameters at the initiation of SIV-B boost.

4. There is no uncertainty in location of the vehicle.

5. During SIV-B boost the thrust acceleration grows

linearly with time, consistent with a constant burning rate.

6. For the purpose of these calculations a nominal value

of 45 ° was taken for the radar line-of-sight. Also, a flat Earth with

a constant g was assumed.



ANALYSIS

Figure 1 Illustrates the geometry consistent with the

stated as sumptions.
V

Y Y •
R

V
x

g

Radar

_Location

Figure 1.

X

where

a I + azt +a 3 tZ (instantaneous pitch angle) (I)

B = b 1 + by t (thrust acceleration) (z)

V = component of vehicle velocity along x axis
X

(3)

V = component of vehicle velocity along y axis
Y

qJ = radar line of sight angle measured from the horizontal

(4)

(5)

R = radar range rate (6)

3



From the figure we have

rt = V cos_+V
x y

sin _b

Vx(t) - Vx(0) + _bl+bzt)
cos 0 dt

0tVy(t) = Vy.(0) - gt + (bI + bzt) sin 0
dt

(7)

(8)

(9)

Since the pitch angle is small, we

approximation we may write

cos e _- 1

sinO _'_ e

assume that to a first

(lO)

(II)

With this approximation we may write for (8) and (9)

Vx(t ) = Vx(O) + I _ (bI + bzt)
dt

_0tVy(t) = Vy(0) - gt + (b I + b2t) (aI + azt + a3 t2)
dt

(12)

(13)

Using (iZ) and (13) in (7) we have

R(t) = cos @ x(0) + /0t(bI + bzt)d

IVy(0)- gt+ _0(bl+bzt)(a I
+ sin @

+ a2t + a3tZ)dt1

Since we are assuming a2 as the only uncertain parameter,

it is convenient to write'(14) as

(14)

4



R(t) - cos

t

Vx(0) +/ (b I

0

t

+fo (b

= a z

1
I

+ bzt) dt|-

J
si_

Vy(O) - gt

I + bzt) (al

t

sin @f (blt+ bztz) dt
0

(15)

o

Now instead of using R(t i) as the sampled measurable,

new measurable

define a

m(t i)-= - cos qJ Vx(0) + b 1 t i+_b 2 t

+ sin _ Vy(O) - gt i+ a 1 b 1 t i+_.a 1

+-_b I a3t i +_b z a3 t

(16)

I

The maximum likelihood estimator of a z

minimizes the function

A

is the value a z

N

(+= (ti)" aZ b l i +-3bZ i sin qJ

a z is found from (17) by setting _--_2 = 0

Z

which

(17)



N

8_
 =2S

i=l

Simplifying

N

Sa2 sin _b

i=l

sin _ Irn (ti)

sin U/]I = 0t2 i 3)"_z{½bli+_b2_i

2
1 t3

N

m(ti) y
i=l

b 1 t2 +'3b2 t

(18)

(19)

and

_(ti) ½ bl_2+ _ b2t
i=l

_2- N
2

i=l

(20)

2
The variance in this estimator, c-

az
is given by

2
O-

_z

N

_rn t2 1

i-1

sin2_ (½blt2 + 1. z -3 ti
i=l

2 (21)



where

2
o-
re

= variance in the range-rate samples (assumed

uncorrelated)

(22)

Simplifying (21) gives

2
O"

2
o-
re

sin 2

N

ti2
i= 1

1 t 3)2+7b2 i

(Z3)

Defining

o

T - time between uncorrelated P_ samples (Z4)

we have

T- NAT = total smoothing time (Z5)

and approximating the summation in (23) by an integral, viz

7



N

i=l

1 ti312+_bz _N__T

T

f
%

T

N/(l=-_- _b
0

2 t.4+ 1 5
i i -_b I b 2 t.

1

I 1 t.2 I 3 12
[2bl i +'3b2 ti I

dt

dt

2 T 5

N bl

= -T- Z0
+

T 6

+

(Z6)

Z

NT4 -Z0-
blb 2 T

+
18

+
bzZ T 2 )63

For convenience we define

k 2 = NT 4 (b21_

blb 2 T
+

18
sin 2 (27)

and (23) becomes.

2
o-

a2

2

(Z8)

8



The initial and final value of SIV-B boost acceleration are

2
13 ft/sec2 and 4Z ft/sec , respectively, over a total burn time

of 169 seconds, giving

b = 13 ft/sec2 = 3.96 meters/sec 2 (Z9)

42 13 3 - 3
b Z = - ft/sec = 0. 17 ft/sec 3 0.05Z meters/sec169 = (3O)

For the above values of b I and b 2 Table I gives

as a function of smoothing time T, where

1
values of _ •

1 1

= l/z

sin _ rT 5 + 18 _

(31)

and where the sampling rate is taken as i/sec,

T

r- N = 1/sec (3Z)

and the radar line of sight angle

4= 45 ° (33)

9



Table I.

T (seconds)

1 ; -1 _

l meters ,

5

2.77

-2
xl0

l0

4.72

-3
xl0

2O

7.8

xl0 -4

40 60

I.22 3.97

-4 -5
xl0 xl0

I (P I00

i.76 9.20

xlO -5 xlO -6

120 140 160

5. 38 3.4O 2.26

xl0 -6 xl0 -6 xl0 "6

DECISION ANALYSIS

Using the information in Table 1 we now examine the detection
A

and false alarm probabilities for the pitch rate estimator, a 2.

Since we have assumed that errors in the estimator are gaussian,

and that the distribution has the same variance independent of any bias

in the pitch rate due to inertial platform drift, the probabilities of interest

may be illustrated as in Figure 2.

_2 I a2

Decision!
preprogrammed or

desired value of pitch rate

Threshold \
estimated value of

pitch rate based on
radar measurements

Figure 2.

_a 2
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For the decision threshold selected (as shown in Figure 2) the

probability of false alarm is the area under distribution Q to the right

of the decision threshold. The probability of detection (i.e. concluding

correctly that the pitch rate lies to the right of the decision threshold)

is the area under distribution Q to the right of the decision threshold.

In this note we choose a decision threshold which will result in

a 1% false alarm probability and then calculate how large the measured

abn°rmality 1_2 - a2) must be before a 90% detection probability is

achieved.

For the above stated false alarm and detection probabilities,

the detection threshold must be placed 2.33 o_2 to the right of az

and I.28 _a2 to the left of _2" Thus a measured abnormality (a z - a2)

equal to 3.61 Cra2 indicates a bias of at least Z. 33 era2 with a probability

of. 9 or an error due to noisy data with a probability of .0 i,

Using Table 1 and assuming 0. 1 meter/sec for the standard

deviation (_rn) of the range-rate data, the standard deviation of in the

pitch rate estimator lo'= / is given as a function of smoothing time in
2 J

Table 2.

Table 2.

r (sec)

O-a2 (rad/sec)

!

5

2.77

xl0 3

i0 20

_.72 7.8

xlO -4 xlO "5

4O

1.22

xl0 "5

6O

3.97

xl0 -6

8O

1.76

x10"6

i00

9.20

xlO -7

• 120

5.38

xl0 -7

140

3.40

xl0 -7

160

2.26

xl0 -7

ii



Figure 2 is a plot of the smoothing time required versus abnor-

mality in pitch rate to be detected with PD = " 9 (detection probability)

and PF = " 01 (false alarm probability).

Monitoring of Vertical Velocity Errors During Boost and Prediction of

Vertical Velocity Errors at the End of Boost Due to Pitch Rate Errors

a 2

The vertical velocity error,

is approximately

e ,

v

Y

caused by a pitch rate error,

T

e=evy a 2 f (bl + b2t) t dt

0

assuming again

sin @--_O, and !I

therefore e^v _- ea2/t]

(34)

ev biT2 b2T3
___l= +
e 2 3

a 2

(35)

Table 3 gives the values of the above ratio as a function of

= = 3
smoothing time where b I 13 ft/sec 2 and b 2 0. 17 ft/sec

Table 3.

T (sec)

e e

...Vy/ a2 (ft)

3.74

xlO 2

I0
20 t 40

V"-------

3.96 i 2.13

x103 ! x104

60

6.01

xl04

80[1o0j120
3.87

xl05

5.93[8 80 l

x105_

12



Using Table 3 the vertical velocity error corresponding to the

detected pitch rate abnormality shown in Figure 3 is plotted as a function

of time in Figure 4.

Figure 4 represents the minimum velocity error that could be

detected after a given smoothing interval.

A more significant calculation is to assume that a given pitch

rate error persists over the entire boost time of 169 sec and to determine

the velocity error this would cause at the end of boost if left uncorrected.

From the maximum velocity error that can be tolerated for an acceptable

Earth parking orbit we can estimate how soon in the boost period it is

possible to predict that a pitch rate error exists which will cause an

unacceptable velocity error at the end of SIV-B boost°

For T= 169 sec. we have from (35)

e

v 6
---_ = 1 xl0 ft
e

a z

I The units for e and e \

are ft/sec and rad/sec
!

respectively /

(36)

or

-6
e = i0 e
a Z v Y

(37)

Using (37) and Figure 3 we may calculate the time required

to detect (for PD = " 9 and PF = "01) that a pitch rate error exists which

will produce an unacceptable velocity error at the end of SIV boost

into Earth parking orbit. For example if the velocity error is taken

as i00 ft/sec then

13



1,000

I00 - l

10 160

0 20 40 60 80 i00 120

Smoothing Time (sec.)

140



g

I1

"a

c_

u_

v

.a

3.7

3.5

3.3

3.1

2.9

2.7

2.5

2.3

Z.l

1.9

1.7

1.5

1.3

1.1

.9

.7

0 Z0 40 60 80 i00 Ig0 140 160

Smoothing Time (sec.)
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e

a z

e

a z

10 -6= x 10 2 rad/sec= 10 -4 rad/sec

= 1.38 x I03 meru

(38)

From Figure 3 we note that this error of 1.38 x 103 meru

could be detected approximately (T = ) 35 seconds after the initiation

of boost.

The general result is plotted in Figure 5. This figure shows

the smoothing time required to predict that a given vertical velocity

will exist at the end of boost (if uncorrected), with a PD = 0.9 and

PF = 0.01.

SUMMARY AND CONCLUSIONS

The error analysis calculations presented in this note are based

on the assumption that pitch rate is the only parameter which is uncer-

tain during SIV-B boost into earth parking orbit. The other basic

assumption is that the range-rate data used to estimate pitch rate is

accurate to (o"A = ) 0. 1 meters/sec. The curves and calculations give

the monitoring time required to achieve a given accuracy of parameter

determination frofn noisy range-rate data, under the constraint that a

detection probability of 90 percent and a false alarm probability of one

percent is maintained in the derived estimate.

The analysis indicates that it is possible to predict any

significant vertical velocity error at the end of boost (due to a pitch

rate abnormality) in sufficient time to take some corrective action.

For example, Figure 5 shows that any vertical velocity error of 20 ft/sec

16
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or greater which would exist at the end of SIV-B boost (T = 169 sec)

if left uncorrected, can be determined in less than 60 seconds of

monitoring. If monitoring takes place from the initiation of SIV-B

boost this would leave over I00 seconds for some corrective action

before final insertion into earth parking orbit. Figure 4 shows that

the accuracy with which a Z0 ft/sec or greater velocity error at the

end of boost can be estimated is better Lhan 1 ft/sec. These prelimi-

nary results indicate that radar monitoring of the SIV-B portion of

the boost of the Apollo vehicle into earth parking orbit can effectively

determine the existence of abnormalities in the inertial platform which

are large enough to cause significant errors in vertical velocity at the

end of boost.
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APOLLO NOTE NO. 224 C.P. Siska

20 July 1964

TRACKING THE TRANSLUNAR ORBIT STARTING

8 HOURS AFTER INJECTION

1. Introduction

This note represents a continuation of the studies presented in

Apollo Note No' 218 and is concerned with the accuracy in predicting

the translunar orbit using tracking data generated at times greater

than 8 hours after injection. Prediction is based on data involving

range only, range rate only, and range plus range rate.

The reference orbit is defined in the above-mentioned Note and

corresponds to a Pacific Ocean injection from the second parking

orbit.

o Stations and Tracking Interval

Station

Carnarvon

Canberra

Guam

Madrid

Ascension

Bermuda

Time After Injection

480 mins. 640 780 880 900 1320

I 1

I

i



3. Tracking Data

- Range o-= 15 meters, timed shared measurements,

one point per minute each station

- Range Rate o-= 3 cm/sec (3 way Doppler Mode),

one point per second each station

- Range Bias Only - a priori bias Z00 meters

- No A Priori Orbit, tracking starts 8 hrs. after injection

4. Results

Table 1 shows the uncertainty in current position and velocity

prediction of the transhnar vehicle. These are the diagonal ele-

ments of the covariance matrix (the RMS values are also given in

Table 1) and are referred to a t = 0 coordinate system (x axis

being the initial radius).

Table ) projecta the uncertainties of Table 1 to uncert_intiel

at the lunar sphere of influence (LSOI). These are now referred to

a Moon - centered coordinate system (the x axis being the radius

to the vehicle when it pierces the LSOI).

The above uncertainties yield the values for the perilune

radius found in Table 3.

RMS values for the position and velocity fo und in Tables

1 and 2 and the above values for perilune radius are also presented

graphically in Figures 1 through 5.
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Hours of Tracking

Figure I.

Current Position Uncertainty for

the Translunar Orbit
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Current Velocity Uncertainty for
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Position Uncertainty at the LSOI

for the Translunar Orbit
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Figure 4.

Velocity Uncertainty at the LSOI

for the Translunar Orbit
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APOLLO NOTE NO. 225 H. Epstein

1 July 1964

COMPARISON OF CAPABILITY OF FIXED TIME INTERVAL

COUNTING SYSTEMS AND N-COUNTERS

This note compares the quantization error associated with a

fixed time counter and an N-counter for measurement of doppler

frequency. The error in cycles or counts allows a simple interpre-

tation to be made of the results. The sample time (T) and the maxi-

mum counter frequency capability (fc) are considered to be the same

in both cases. The results indicate that where a large bias frequency

is superposed on the doppler frequency, as is presently employed by

the DSIF and contemplated for Apollo MSFN radars, no important

difference in quantization error occurs. Substantial quantization

error reductions for N-counters over fixed time counting systems

occur only for low bias frequencies and low doppler frequency (as

compared to the design maximum doppler frequency). The choice

of technique where high bias frequencies are employed then primarily

can be made in terms of the preferred technique for computational

ease. The maximum frequency associated with the N-counter can be

made more noise-free than the multiplied doppler frequency for the

fixed time system. Proper design can make this noise source

insignificant for multiplication ratios of interest (about i0) for Apollo

application. Another factor that should be considered for Apollo is

that the DSIF radars are backups for the MSFN radars. This makes

it highly desirable that the data processing be made as similar as

possible. The analysis will yield the results for a one count(or

cycle) error for both techniques. The standard deviation of the error
1

in both cases for a random quantization type error is -- ( ,'_.4)

of the values indicated. V-6-



Case I Fixed Time

with
f
C

M l - f
max

(i)

(z)

and f = (fB + fD) (3)
max max

where

_ql = quantization error in counts with a fixed time

counting system.

M 1 = multiplication ratio used

f
C

= maximum counter frequency

fB = bias _requency superposed on the doppler

fD = doppler frequency

fmax = maximum value of fB + fD

Case II_

N

T - fB + fD (4)

T = counting time associated withthe number of cycles

N = number of cycles

2



then

dT N T
= - = (5)

Rearranging Equation (5) and using Equation (2),

obtain

one can readily

(fB + fD )

Aq2 = TdfD - M f (fc dT) (6)
1 max

where Aq2 = quantization error associated with N-counter technique.

For a one increment time error in T,

fc dT = 1 (7)

then

_ (fB + fD ) l

Zkq2 = =
M 1 f M Zmax

where M 2 may be considered as the equivalent multiplier for a

fixed time counting technique. This clearly indicates that high bias

frequencies negate the possibility of substantial improvements in

quantization error performance for an N-counter system over a

properly designed fixed time counting system.
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APOLLO NOTE NO. ZZ6

RANGE RATE ERROR DUE TO UNCERTAINTY

IN EARTH-MOON DISTANCE

B. Saltzberg

2 July 1964

This analysis demonstrates that the uncertainty in Earth-

Moon distance (400 meters) does not produce a significant perturbation

in doppler range-rate determination.

Let

R = Earth-Moon distance = 385 x 106m
m

AR =
m

r

uncertainty in R = 400 meters
m

radius of circular lunar orbit = 1887 x 103 m

_3f = angle position vector to vehicle makes with normal

to the Earth-Moon line.

R = instantaneous radar range to vehicle

/-

]Earth

Figure i.

From Figure I, we note:

R 2 = R 2 + r2- Z R r cos (_ + _/Z) (1)
m m

= R2 + r 2 + 2 R r sin _ (Z)
m m

For R m and r time invariant we have,

i = rRIT1
R cos o_ o_ (3)



The error in i_ due to an uncertainty in Rm(ARm) is

of<¸
AR

8R m
m

(4)

where

-O--A-- =
m

P_ r _ cos cz
r _ cos _ m 0R

R R2 _[R m

r _ cos oi

R R 2 +rR sin_ )
1 - m m

R 2

r _ cos _ (r 2 + R r sin _)
1_3 m

m

= r_
cos _ (r2 + R r sin _)

m

+ r2 + Z R m r sin

(5)

The error coefficient (5) is plotted against _ in Figure 2.

From Figure Z, the maximum value of the error coefficient
-8 -I

is approximately i0 sec Assuming an uncertainty of 400 meters

in the Earth-Moon distance this corresponds to

f_l_ = i0 -8 (400) m/sec. = 4 x 10 -6 m/sec.

= 4 x i0 -4 cm/sec.

which is a completely negligible contribution to the error in range-rate.

2
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MSFN STATIONS FOR LUNAR OPERATIONS

3 - Transmit - Receive - 85 ft. Dish - Z Systems at Each

DSIF Sites: Madrid, Canberra, Goldstone

9 Receive Only - 30 ft. Dish

Good Geometry: Ascension, Guam, Antigua,

Poor Geometry: Guaymas, Corpus Christie,

Hawaii, Carnarvon

Cape Kennedy, Bermuda

Lunar Coverage - 5 ° Horizon - All Sub Lunar Points

3 or more: 99% of Time

4 or more: 70_0 of Time

Excellent geometry

Station location errors and rates of change need Study

CSM tracking possibility

Will do next

Must have NS separation to get out-of-plane.



DSIF RAW DOPPLER NOISE

1 Station - Rubidium Standard

Flight

Mariner /=I

Ranger 6

Ranger 6

Ranger 7

Freq.

L

L

L

L

S

Count Time

Quantization

Error

60 sec.

1 sec.

I0 sec.

1 sec.

1 sec.

Measured

Error

. 10 cm/sec.

6 cm/sec.

•6 cm/sec.

• 3 cmlsec.

.3 cmlsec,

• iZ cm/sec.

6 cm/sec.

• 6 cm/sec.

July 25

Nov. '64

(Separ ated

Transmit and

Receive)

Bissett-Berman Using 3 cm/sec, for 1 see. Samples.

Believe cr is close to 1 perch/keemin

so wohld be using 5 o-

Z



MSFN LEM ASCENT GUIDANCE

i) Monitoring

Z) Injection Accuracy

3) Fuel Cost

3



MSFN 3 STATION VELOCITY ACCURACY

8 SECOND SMOOTHING

AV E.M = AR

AI_ .I ft/sec.

R z

1

o D

• Madrid-Goldstone _ 120 ;-_ = 33

o D
Madrid-Ascension _,_50 ; _- = 66

AVE M line = . 1 ft/sec.

AVII V = 3 ft/sec.

#i B AVout-of-plane = 6 ft/sec.

4



BASIS OF MSFN LEM

ASCENT MONITORING CAPABILITY

MSFN

Velocity
Re solution

(8 second

smoothing)

Inertial

Component

Earth-Moon Line

,_ Altitude

O, 1 ft/sec.

Pitch gyro

Out- of- Plane

_Yaw

6 ftlsec.

Yaw gyro ,
or

Roll with

Pitch program

n

Along V
C

3 ft/sec.

Acceler-

ometer

i) i000 meru only i ° over boost

z) Know if get out of velocity box

3) Can't separate yaw and roll gyro defects

5



MSFN LEM ASCENT MONITORING CAPABILITY

MSFN Resolution = Velocity

System Pay-off or Penalty Parameter = Velocity

MSFN can detect any malfunction which is serious.

3 Station 8 Second Accuracy

x V Magnitude: 3 ft/sec. 60 ft.

y Earth-Moon Line: . 1 ft/sec. 30 ft.

z Out-of-Plane: 6 ft/sec. IZ0 ft.

6



MSFN-SPACECRAFT CONTROL LOOP

A c(t-v 1 )

Delay 7z

"A-(t)

P

m

v (t)

T=6 sec

I

Delay T 1

W(t-t I)

1 j-- _

T -v z ev(t)

V
go

Optimum

Program



MSFN LEM ASCENT GUIDANCE

Total AV Penalty to Rendezvous < 30 ft/sec.

Ascent Guidance Cut-off Errors < . 1 ft/sec.

altitude rate

< 3 ft/sec. AV

< 6 ft/sec. Out-o£-Plane

Roll Cross-Coupling: i000 meru _ 1° over boost



NUISANCE __

D- _acecraft

Station

w

-S- : _.+ 5-p

_- : - _ _ so need R ° and R °

fD : -C-z_ft

Earth-Moon Distance (D), Station Location (p-), Moon Gravity (_),

Launch Site (Ro' Ro) ; Speed-of-Light (C), Clock Rate (ft)

9



HAPPY NUISANCE PARAMETER RESULT

m = f (p, n)

8f 8f

Am = 8--_- Ap + _-_ An

8f
Am -_-_ An

Ap = 8f ; An =

8f
if 8n large can estimate n while

8f
if O---n-small, An does not effect Ap.

8f
Am- -_ _p

8f

an

Best estimate of nuisance parameters for MSFN

purposes is to calculate how well they can

be found during long term missions:

Ranger, Mariner, lunar orbiter, pre-

landing Apollo, CSM on mission itself.

I0



MIDCOURSE ACCURACY STUDY INPUTS

Madrid, Goldstone, Ascension

1 ft/sec.1 second f% samples to -[-0-

Unknown Clock Rate =
ii

1 part in I0 Goddard Spec 1 in I0 I0

Velocity of Light = 1 part in 107 via DSIF

of Moon =

Earth-Moon Distance =

Earth Station Location

Launch Site Location

4 parts in 105 via DSIF

Velocity of Light = I part in 107 = 40 m

-- 150 £t. altitude _ via DSIF

= 300 ft. latitude / much better
= 300 ft. longitude

= 30 ft.

3 Station Ascent

Tracking

On-board

g or 1 Station

A Position (ft)

x y

60 3O

1600 ZI00

IZ0

ZZ00

AVelocity (ft/sec)

x y z

3 .i 6

6 4 6

Evaluation of more realistic numbers now in progress.

11



MIDCOURSE VELOCITY OUTPUTS

Coordinate System: y _.

X =

(z --

Injection Point Altitude

Injection Velocity

Out-of- Plane )

Landing Site at Moon Center

Minutes
After

Injection

1 o-Postion ft. ft/sec.

AX Ay Az

J
0 65 32 130 6.5

5 64 31 Z. Z

io 63

50

4O

31 I
31 !

zo ]

1 o- Velocity

•Ax

i

3. Z 0. I

0.8 0.01

0. Z 0.01

0.03 0.01

0.03 0.01

Z0

3O

Z.I

1.3

.7

As Landing Site moves toward side, geometry

improves (Ax down, A_ up) but observation

time reduces to 10 minutes when landing

site is 60 ° from center.

lZ



EFFECT OF NUMBER OF STATIONS

Minutes
A fte r

Luj ection

Madrid
Ascension

5

l0

t0

3O

Madrid
Ascension
Goldstone

Az ft. A_. ft/sec.

130 6.5

Z.Z

2.1

1,3

.7

Madrid

Az ft. Az ft.

0 2ZO0 6.8 ZZO0

2-100 6. 7

1910 5.7

2,7

1.2

!S!0

1410

To get useful short time data want

3 to see Moon at all times with

6000 n.m. of E-W separation

and 3000 n.m. of N-S separation.

sec. ,

6.8

13



CONSIDERATION FOR MSFN SUPPORT

TO LEM I<ENDEZVOUS

I.

o

e

o

,..an't provide Dc_z_ help if can't see (car. predic:: _vell)

Applies to Nominal Trajectory

R and f% accuracy along Ea'zh-Moon Line .-_

50 ft. and 0.1 ft/sec, directly from one station.

Out-of-Plane accuracy for short observation times=

6 ft/sec., no position information

Injection to safe circular parking orbit easy

Minimum fuel plane change correction must be made

when in plane so over launch site or 180 ° from it.

, 14
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LEM RENDEZVOUS TRAJECTORY

FOR BEST MSFN SUPPORT

Transfer +

In -plane

Cor rection

Plane Change

ect to

50, 000 ft.circular orbit
To Earth

Rendezvous Maneuver

R and _ Directly

from one station to

50 ft. and 0. 1 ft/sec.

16



SUMMARY

l. IZ Station MSFN meeting GODDARD

specifications will give excellent

LEM support. Better geometry

would make 8 or 9 station MSFN o. k.

. Ascent monitoring and guidance

feasible over range of landing

sites considered.

o Midcourse guidance support

looks good, negligible

AV penalty.

. Rendezvous guidance support

feasible with special trajectory.

17
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APOLLO NOTE NO. 228 B. Saltzberg

13 July 1964

ALTITUDE UNCERTAINTY OF A VEHICLE IN

CIRCULAR ()RBIT ABOUT THE MOON

This note derives an expression for the uncertainty in minimum

altitude (perilune decrease) resulting from uncertainties in _ and un-

certainties in the components of position and velocity of a vehicle in a

nominal circular orbit about the moon.

The expression derived for the uncertainty in perilune radius

is different for positive and negative perturbations of the parameters

involved in the error analysis. For example, a positive perturbation

in the tangential velocity of the vehicle at r ° (Figure i) will result in

an orbit with perilune at r ° and therefore unchanged minimum altitude.

However, a negative perturbation in the tangential component of velo-

city at r will result in a reduced perilune radius at a point on the orbit
o

180 ° from ro, This dependence of the error in perilune radiul on the

sign of the parameter error causes finite discontinuities to occur in

the values of the partial derivatives occuring in the error coefficients

when the reference orbit is circular or very close to zero eccentricity.

This caused considerable confusion in our initial analysis because the

peculiar behavior of the partial derivatives of r with respect to the
P

parameters for low eccentricity orbits is concealed by the formal

mathematics. The following word of caution is offered for those of us

who may encounter this problem in the future: One must recognize

(and take into account in the analysis) that for orbits with very small

eccentricities, an error in the orbit parameter can leave the perigee

position unchanged or shifted 180 ° depending upon the sign of the error

in the parameter.



The coordinate system and the notation used are consistent

with Apollo Note No. 82 which employs a nonrotating, moon-centered,

right-handed coordinate system as shown in Figure 1. The x' axis

is directed along the initial position vector (x_, 0, 0) of the vehicle

and the vehicle motion is in the x' y' plane with y' directed so that

_r° is positive. The orbit parameters are the components of r and r
O O

in the x' y' z' coordinate system', these are Xo, YO' Zo' k_, Yo" and 7"'o'

and are called a I thru a6, respectively.

The following expression for the uncertainty in orbit altitude

is valid only when the sign of the parameter errors are such that

each of them would cause a decrease in the perigee altitude. It turns

out that an error of opposite sign in all the parameters except a 1

leaves the perigee altitude (as far as first order effects are concerned)

unaltered, that is, equal to the altitude of the circular orbit.

Let

P
= uncertainty in minimum altitude of a circular or

near circular orbit due to uncertaintities in

bt, a l, a Z, a 3, a 4, a 5, a 6.

The first order error dependence is given by:

Z



This result is derived below

Or 6 Or

(1)

where

H z
r =
p _ (l+e) (2)

In terms of H, _, and e, Lkr can be written
P

_r 8r @r

_r = O--_ d_+ O_H dH+ 8---_ede
P

(3)

where

dH

6

= -_. daj
(4)

6

Be _=- Oe

i,-:= _ d}_ + /-- 8a---_daj

j= 1 J

(5)

The partial derivatives of H and e with respect to the parameters are

given in Apollo note 8Z. Using these results in (4) and (5) and substi-
tuting into (3) gives



_r
P

"- .. w

8r

d_

÷ 1d_
(6)

+
I 8r 2a 4 a 5 Or] da 2

÷
I 8r Za 1 a 5 8r

al _ + l_ e_ da 5

but

8r a I

_r

__R= Z

OH a 5

(7)

_r

a 5

u

where - holds for perilune at r
0

and + holds for perilune 180 ° from
0

4



For perilune at r we have
0

al + a5
_r = 1 -_ d_ + a 5 _ -_2 dal

P _ _ a 5 _ a 5

(8)

(a5-_2) ] da5

and noting that all coefficients vanish except for dal, we have

Zkr = da
p 1

(9)

For perilune 180 ° from r we have
O

I c IZkr 1 2 -- % , da
= - % d_+ a5 _-_5 +

P _ _ a 5 a 5

(i0)

da2[a2alas1--
_55 _ a 5

I da 5



simplifying (1O)

Za 1 4a4

Zkr = - -- d_ + 3 da 1
p _ a 5

4a 1

. __ daz + _ d_5
(ii)

but a 4 = 0, so

Za 4a 1
_r _ 1 d[a +3 dal + da5 (iz)

(12) demonstrates that a positive perturbation in_ decreases

perilune and negative perturbations in a I or a 5 decrease perilune,

= da as shown in (9).
Perturbations of opposite sign give Z_rp 1

y!

\

\

X !

Figure i. 6
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APOLLO NOTE NO. 2Z9 J. R. Holdsworth

13 July 1964

STATISTICAL TECHNIQUES FOIL DETECTING THE EXISTENCE

OF SYSTEMATIC NON-RANDOM TIME VARYING EILILORS

BETWEEN INDEPENDENT MEASUREMENTS

OBTAINED FROM TWO SOUI_CES

Introduction

The motivation for this note is the interest which has recently

been shown in a class of problems such as that considered in Apollo

Note No. 209. For example, we might assume that we are obtaining

similar types of data about a space vehicle from two independent

sources where each source is corrupted by an additive noise process.

We are interested in determining whether the observed differences in

the measurements may be attributed to the random fluctuations of that

additive stationary noise, or whether it is reasonable to suppose that

the differences arise from some systematic non-random time-varying

error component such as tyro drift which could be caused by an undetected

equipment breakdown or malfunction.

We shall allow both of the measurement sources to be corrupted

by additive stationary zero mean noise but will assume that the possi-

bility of a time-varying systematic error component exists for only

one of the sources which we shall call Source i. Thus, in Note Z09,

the ground-based radar data were assumed only to be perturbed by

noise while the measurements from the on-board system were corrupted

by a non-random time drift as well as by noise.

Statistical techniques for detecting this systematic time variation

are referred to in statistical jargon as tests for trend. The more a priori

information one has about the nature of a possible trend, the more

powerful is the test which can be designed to detect the trend at a

given confidence level. For example, if one suspected that any

systematic difference in the measurements was due to some periodic



trend, the data would be processed differently than if the only possible

trend were assumed to be linearly varying with time. On the other

hand, if the observer has very little a priori knowledge about the

nature of the possible trend, then he must effect a compromise and

design a test which will be effective in detecting any one of a large

class of possible trends although not optimal for detecting any one

specific alternative. This point will be referred to again when we

consider certain specific tests.

In addition to not having precise knowledge of the possible

class of error trends, we may also lack information about the

statistical nature of the additive noise sources. Thus for example

if we assume that the noise samples ex(k ) and ey.(k) at the k-th

discrete sampling instant are zero mean and neither cross nor

auto-correlated then we may or may not know their variances
2 2 2 2

o-x, O-y. A lack of knowledge of crx and O-y will tend to degrade

our ability to efficiently detect trends. The effect of this degradation

due to lack of knowledge about the noise parameters will not be computed

in this note, but is a tractable problem and may be considered in a

futuze note. Besides not knowing the noise parameters the investlgato_

may not even have precise a priori information about the family

of distributions to which the noise belongs. This latter possibility

coupled with the lack of knowledge of possible trend functions creates

a very vexing problem whose solution requires the use of what are

called distribution-free methods. As these methods are less power-

ful than others available when we have the a priori knowledge which

we shall assume,we will not treat this area.

Before proceeding we shall define one or two statistical terms

which may not be familiar. First, by a statistical hypothesis, we

mean an assumption or conjecture about the probability distribution

which governs the population from which a group of measurements

are going to be made. A hypothesis is called simple if it completely

2



specifies the distribution of the measurements or composite if it

only partially specifies the distribution. As an example the assumption:
"This population is governed by a normal distribution with zero mean

and unit variance, " is a simple hypothesis since specification of the

mean and variance uniquely determines any normal distribution. On

the other hand, the assumption that a population is governed by a

normal distribution with a zero mean is a composite hypothesis

since it does not specify the variance of the normal distribution

and hence does not uniquely determine the distribution.

A test of a statistical hypothesis is some rule based upon

observation of the measurements which tells you to either accept

or reject the hypothesis. The hypothesis to be tested is usually

called the null hypothesis and written H o. If the null hypothesis

is rejected we say that the alternative (denoted by HI) hypothesis is

accepted. Associated with any test, there are certain error proba-

bilities. The type one error is the probability of falsely rejecting

H ° and accepting I-Ii, which we shall denote by i-_. This error is

also called the size of the test and in certain contexts the false

alarm probability. The probability of failing to reject H when in
o

fact it is false, is called the type 2 error and is generally denoted

by _. In some contexts i-_ is called the detection probability.

Finally, one minus the type one error or _ is called the confidence

level of the test. _ is the probability that if the test statistic based

on the measurements tells you to reject H ° that H ° is actually false.

Now if H ° and I-II are both simple hypotheses then there is

no problem in defining the probabilities _ and _. In this case it is

possible to prescribe a fixed type one error and then devise a test

which will yield a minimum type 2 error for the chosen type 1 error.

That this is true and how to obtain the optimum test is roughly the

content of the Neyman Pearson theorem, e.g., ref (1).

Many times, however, as we shall see, at least one of the

hypotheses H ° or H 1 is composite. In this general case, it is



usually impossible to formulate a well defined optimization problem;

in fact if HI is too large a class, the probability _ may not be defined.
Generally, however, the test is chosen so that the confidence level

may be computed. For the cases we shall consider, HI willusually
be composite while H° will sometimes be simple but in all cases _,
the confidence level, will be well defined.

More l" _+l.. _t we are uu_in_ng N measurements

from each of two data sources where the k-th measurement from each

of the sources may be written as:

x(k) = A(k) + d(k) + ex(k )

y(k) = _ (k) + e (k)
Y

(1)

In Equation (i) _(k) is the actual trend of the possibly time-varying

quantity we are measuring, ex(k ) and ey(k) are zero mean, mutually
Z

independent samples from two gaussian processes with variances o-
Z x

and o- which may or may not be known. The quantity d(k) is the
Y

deterministric component which may possibly exist in one of the

measurement sources.

Now since we are interested in deciding whether our measure-

ments are consistent or whether there is some systematic discrepancy,

then the hypothesis which we wish to test on the basis of our data

is whether d(k) is identically zero for all times k over which our

measurements are taken. Note that d(k) provides for the possibility

of constant bias errors as well as time-varying systematic errors.

Derivation of Certain Test Statistics

For our first example we assume that e (k), e (k) are samples
x . y 2 . 2

from independent gaussian processes with known variances o- ana o-
x y

respectively and we assume that we have Nmeasurements from both

of the data sources which were obtained at the same time, i.e., we

have available the numbers x(k) and y(k) for k=l, . . . . N. If we subtract

y(k) from x(k) we may write:

4



6(k) = x(k) - y(k) = d(k) + ex(k ) - e (k)Y
(z)

In Equation (Z) we note that 6(k) does not depend upon _(k) the actual

trend of the measurable but only upon the noise components and

systematic error d(k).

Now since we are interested in determining whether a systematic

error exists, a reasonable null hypothesis to test is that no such error

exists or equivalently that d(k) is identically zero or that the 6(k)

quantities are all independent samples from a zero mean gaussian

distribution with known variance _O-x_ + o Z. Now to suppress the effect
Y

of the noise components we might compute the sample average of the

6(k) quantities to obtain:

N N

k= 1 k= 1

N N

N _ d(k) + N _ [ex(k) - ey(k)]

k=l k=l

(3)

N

±
_[(N)+ N _ [ex(k)" ey(k)]

k--1

u

Now if the null hypothesis H ° is true then the quantity 6 is

a gaussian variate with a mean value of zero and a variance given by:

Z Z
+o-

Z °-x y
O-- =

N
6

On the other hand if H 1 is true, i. e., if there is some systematic

error so that d(k) _ 0, then the distribution of [ in this situation

(4)



is still gaussian with variance given by (4) but now the average value

is d(N) instead of zero. These contingencies are conveniently

summarized in tabular form below:

2 2
o- +o-

2 x yH : _ gaussian, E _- = 0, o- =
o _ N

o -2 + o -2
2 x y

H 1 : 5 gaussian,E 6 = d(N), o- =
N

Now, if we knew the possible functional form of the trend

function d(k) it would be very helpful but even if we do not we may

still test the hypothesis that d(k)- 0 at a given confidence level.

For example suppose that we wish to test H at the 95% confidence
O

l_v_l, i,_,, _ _ ,95, _nd let us_ also a_mc that w_ have no a p_io_i

knowledge about d(k) under H I . Then what we wish to do is to pick

some sensible way of partitioning our set of possible observed 6's

into two regions called acceptance and rejection regions such that if

6 falls into the rejection region then with a probability of . 95 we

can assert that the measurements came from a population with

E_ _ 0. With no a priori knowledge of the possible form of d(k)

under El, it is customary to reject I-I° if either:

7--2 +o -2_<-2 x y
N

or

6m+2 J z +o-Z
°-x y

N

(4)

If on the other hand we knew that the effect of d(k) were such

that under the I-II hypothesis we had

E_->0 (5)



then a better test of the hypothesis

_ 1- 0".

> i.645 x y
N

and to accept H ° otherwise. If (5) is known to be true, the test

indicated by (6) is better or more powerful than that indicated by

(4) in the sense that for the same false alarm probability a higher

detection probability is achieved.

More generally instead of working with _- we work with the

equivalent test statistic
N

Z
i= 1

(xi - yi)

oZ+ z _N( Z+o_Zx y x y
N

(6)

(7)

Then under the H ° hypothesis u has a standard gaussian distribution

so that for an arbitrary specified false alarm probability we may

write

co i 2
1 f "Z u

= _ J e duPFA _-_
UFA

(8)

where UFA is determined once PFA has been specified - e. g., if

PFA = "05 thenuFA = 1.645.

The detection probability corresponding to a given false

alarm probability is the probability that the observed u exceeds

UFA given that H 1 is true or:

co 1 Z

PD ._---1 _I -Z u
- e .du

_"_ -E(u )UFA IH 1

(9a)

7



where from (7) it follows easily that

N

i= 1
(ulH I)=

_N(°-Zx + °-2 )y

(9b)

The statistic u is attractive because of its extreme simplicity.

That is, the distribution of u under the hypothesis H ° depends neither

upon the actual trend terms _ (k) nor the drift terms, while the distri -

bution of u under H 1 depends only upon the time average _(N) of the

drift terms, so that the exact calculation of the false alarm and

detection probabilities is very simple- e. g. , equations (8) and (9).

Furthermore, u has the advantage of being an extremely simple linear

function of the observations which reduces the amount of necessary

data processing.

On the other hand, the functional form of the _ (k) may well be

known and may depend upon a finite number of parameters say al, _.. ap
s o that

(k) = _ (a I.... ap, k) (i0)

Likewise the functional form and parametric dependence of the d(k)

terms may also be known so that

d(k) = d(bl,...bm, k) (ii)

where the actual parametric values al,...a and bl,...b may be
p m

unknown.

Now instead of using the u statistic we could have designed some

other statistical tool which took advantage of the knowledge of the

functional forms (i0) and (ii).

8



The question then arises as to whether we could have obtained

a "better" test by following the latter procedure where by better we

mean some test which for a fixed false alarm probability yields a

uniformly higher detection probability than the test based upon the
u statistic. Certainly we should expect to do at least as well since

we may trivially estimate the a. and b. by ignoring them and use the
" l l

u statistic itself.

The exact question as to precisely how much we pay in detection

probability for the attractive simplicity of u is very difficult if not

conceptually impossible to answer since in general there is no uniformly

best test of the composite hypothesis H versus the composite alternative
O

HI as we have formulated them.

To illustrate this difficulty let us denote the detection probability

corresponding to a given false alarm probability obtained by using the

u statistic by PD(U) - i.e., Equation (9). Then for a given d(N) by using

Equations (8) and (9) we may plot PD(U) versus PFA" Now let z be

some other test statistic and for a given false alarm rate let PD(Z) be

the corresponding detection probability. We may now plot both PD(Z)

and PD(U) versus the same PFA scale and might conceivably obtain

the curves as shown below in Figure I.

Now if the curves look like those in Figure i, i.e., if

PD(u) _> PD(Z) (iz)

for all false alarm probabilities then the statistic u is said to be

uniformly better or more powerful than the statistic z for testing

I-I° versus H I . Thus in this case we would not hesitate to say that

u is a better test statistic than z.

On the other hand, suppose that the curves PD(U), PD(Z)

had the appearance as shown below in Figure 2.
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In this case we may not make the blanket assertion that u is a better

test statistic than z since for false alarm levels below about . 8, u

yields a higher detection probability while for higher false alarm

rates z is a better statistic.

Perhaps the best single statistic to use as a basis of comparison

with the u statistic would be what is called the log likelihood ratio

statistic. This statistic is defined by:

Ilog L_o (x I.... XN' YI' .... YN i' i )

(13)

log _bI (Xl,...xN, Yl,...yN i' m

A

where L ° denotes the joint probability density function of all of

the data under the H o hypothe_i_ where any actual but unspec£fied

parametric values of ai, b. have been replaced by their maximum likelihood1

^
estimates under H ° - i. e. , _a° ' i . L 1 is similarly defined

Al _i
i.e. ai . are the maximum likelihood estimates of the unknown

A A

parameters ai, b i conditioned upon H I being true. The ai, b i are

of course obtained from the gaussian nature of the noise ex, e and
Y

the assumed knowledge of the functional forms given by Equations

(i0) and (ii).

The statistic z deservedly enjoys a good reputation as a test

statistic since when H ° and H I are such that a uniformly optimal

test exists then z often provides this test statistic. In the more

common case where no such best test exists then the z statistic

will in general still yield good performance. The difficulty is that

for even relatively innocuous functional forms for _ (k) and d(k) that

z will often have a very involved non-linear dependence upon the data

which means that it is often very difficult to compute the probability

distributions of z under H ° and HI, a knowledge of which are necessary

to set false alarm rates and compute detection probabilities.

Ii



It is known, e.g. , reference 2, that under reasonably general

conditions that the quantity - 2 z is asymptotically distributed under

the H ° hypothesis as a central chi square variate with 2N - p-m degrees

of freedom where p + m is the total number of parameters to be

estimated so that for 2N- p-m sufficiently large, we may compute

approximate limits for given false alarm rates. Also under the

H 1 hypothesis - 2 z is approximately non-central chi square which for

a large number of observations allows one to compute approximate

detection probabilities.

In spite of the possibility of obtaining approximate detection

versus false alarm probability curves using the likelihood ratio

statistic, our computations will be of a more modest scope. We shall

content ourselves with comparing u with certain other linear statistics

which possess certain optimal characteristics in different contexts.

Thus while we may not give a precise answer as to the cost in detection

probability which we incur as a result of using the simple linear

statistic we shall be able to obtain analytical expressions for certain

bounds on this cost.

To obtain a reasonable basis for comparison, we argue

as follows. Clearly the gain in detection probability attainable by

optimal use of Equations (I0) and (i i) in estimating the unknown

parameters cannot exceed that achieved when we have exact knowledge

of the quantities _k and d k. However when these quantities are known

exactly under the H ° and H 1 hypotheses then the problem is that of

testing a simple hypothesis versus a simple alternative and from the

Neyman Pearson theorem we know that for this case there is a

uniformly best test. Thus we now derive the test statistic for this

case and write the resulting expressions enabling us to compute the

detection probability versus false alarm probability curves.

That is, our present set of hypotheses take the form:

12



Ho: x. = _i +i ex(i) ex(i), ey(i) gaussian,

Yi = _i + ey(i) zero mean and independent
Z

with var ex(i)= o- knownx

Z
andvar e (i) = o- known,

• Y

_i known.

HI: x.i = Mi + d.i+ ex(i) same conditions

Yi = _i + ey(i) as before only

di _ 0 assumed known.

Forming the joint likelihood functions of the data under H
o

and H 1 respectively we have:

1 I 1

L(xi' Yi IH o) = (Z=) N o_N o_N exp _ +
x y O-y i=1

and

L(xi' Yi H I) =
1 1

(2_)N _xNcr N exp _ --Z
y i-- 1

I (xi -_i - di) Z

H
0

N >j+ i I _i)z(Yi -

Cry i= I

Now the Neyman Pearson theorem says that the best test of

versus H 1 is one based upon the statistic

(Yi-_i) (i4)

(is)

13



-A- = log
L(xi'Yi [HI)

L(xi' Yi [Ho)

(16)

If we compute (16) by using (14) and (15), and if we neglect certain

inessential constants, it is easy to show that the quantity_/__ is given

by:

N

-/_-= I di x.i

i= 1

(17)

which has a gaussian distribution under both of the hypotheses H
o

and H I. As is customary, for ease of computation we replace__k_

by an equivalent statistic _ which is normalized so that under

Ho, _ has a standard normal distribution, i.e., with zero mean and

unit variance. This is done by setting

(18)

and

N

I di (xi - _i )

i= 1

X 1

1

From (19) it is trivial to verify that:

(19)

(z0)

14



so that using this statistic the false alarm probability is:

co _i _2
= e d_ (Zl)

Similarly from (19) and the fact that Vat Lex(i) H ° =

[ I I 2Var ex(i) H I = o-x it is easy to show that under the H 1 hypothesis

we have:

E = i= 1

O-
N

d÷
l

(22)
and

so that in this most favorable of all cases we have the following

equation which with ]Equation (21) allows us to compute the detection

probability as a function of the false alarm probability:

CO

PD = I e Z d_

r
_;_-_L_I_l

(23)

1

CO

_A -_
e Z I dE

_ i= 1 a
G"

X

(24)

15



Interestingly enough when _i and d. are known perfectly, theI

y measurements play no part in the optimal statistic. That is, the

only purpose that the Yi measurements serve is to facilitate the

estimation of any parameters which may be assumed unknown under

either of the hypotheses by providing more redundant data.

Now using Equations (23) and (24) together with (8) and (9a)

we may compute an upper bound for the cost in detection probability

which we incur by using the simple statistic u instead of optimally

using (i0) and (ii) to estimate the unknown parameters• However,

before making this comparison it will be of interest to consider yet

another situation.

We shall assume that under H ° and H I that we have no

knowledge a priori of the _i terms and that we are either unwilling

or unable to estimate them. However, we shall assume that we do

know the d.lterms exactly under the I-!I hypothesis. Subject to this

condition we wish to derive the best linear function of the differenced

measurements which has a standard gaussian distribution under H
O

Our purpose for doing this is that it will provide a convenient way of

getting an upper limit to the penalty we pay by using u instead of optimally

estimating the unknown parameters in (i0) by using the differences and

the measurements.

Mathematically our problem is to find a statistic _ given by:

N

= _ c1(xi-Yi ) (25)

i= 1

where the ci. are chosen in such a way that the quantity ]E .!_ ] H I

is maximized subject to the constraint that _ has a standard zero

mean unit variance gaussian distribution under the hypothesis H .
c O

•
statistic we have the following relationship between the false alarm

and detection probabilities:

16



co 1 Z

i < -_-_
= -- e d_

PFA

FA

1
PD =

co 1 Z

e d_

FA -E(_ IH l)

(Z6)

Thus from (26) we see that subject to the constraints, for any false

alarm probability, the detection probability is enhanced by choosing

the z.1so that E (i IH I) is maximized.

More precisely, we wish to choose the quantities c. to maximize:
1

N

_[,..1]:7 od,_ _27,
i=l

_ubject to the constraint:

N

w_[,,.o]-w_[,l..I-,o-:+_,2o._-,,
i= 1

(Z8)

To do this we let k be a Lagrangian multiplier and introduce the

modified function _ defined by

N N

i=1 i=1

(29)

Now the maximizing set of ci must satisfy the constraint equation (28)

together with the equations:

17



8C.
1

= 0 (30)

from which we obtain:

d°

1

ci Zk (31)

or

4k z c. = d.Z
i I

(32)

where we recall that the d. are assumed known.
I

To determine the value of the Lagrange multiplier we sum

both sides of (3Z) using (28) to obtain:

N

4k 2 = (O-2x+ o-z ) £ d.2y I
i=l

(33)

Zk = (o- +o- ) z
i= 1

(34)

or from (31)

C.

1

d.

1

N
iF 1

(35)

Finally, substitution of (35) into (28) shows that

18



N

= 1 Z d.1(xi - Yi )

J , Z 4 ''
i=l

(36)

which shows that when the d. are known and the __ are not to be
1 |1

estimated that the best linear statistic is obtained by correlating

the differences x. - v- with the d. signal whose presence we wish
1 --I 1

to detect.

From (36) we see that

x y

(37)

from which we obtain the following relationship relating detection

and false alarm probabilities for this statistic :

00

PFA

FA

1
PD(_) = __

O0

r

e

FA

Z
e dl

1 2
-Zi

d_

I N d.2
. i= 1

o..2 + c_ 2
y

(38)
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Comparison and Conclusions

We are now in a position to write analytical expressions for

bounds of the cost in detection probability which one pays by using

the very simple statistic u instead of optimally utilizing equations

(i0) and (ii) and estimating the unknown parameters.

First we compare the loss of detection probability obtained

by failure to use both (i0) and (ii) optimally and by using the

sample mean differences only. Since both the u and the _ statistic

have the same distribution under Ho, then for a given false alarm

probability determined by tFA , the difference in the detection

probabilities is given by:

00 00

. 1 t 2 f i t2

A (_,U) = i e "_ dt - l--l- e - _ dt (39)

Or

A (_, u) = 1_!_ e -_ dt (40)

tFA" E[[ I H1]

where we recall from Equations (9b) and (22) that:

N N

d.z I d.1

y) Tx l+o-Z/o -zy x

2O



E
i

= i= 1

O'-
x

(42)

It is perhaps appropriate to stress once more at this point that

Equation (40) represents an upper bound to the penalty one pays for

using the simple statistic and not optimally using the a priori

structural information given by Equations (i0) and (ii). That it is an

upper bound is clear from the fact that no matter how well the unknown

parameters are estimated that we will never do better than if they

are perfectly known.

In a similar fashion the quantity A (_ , u) may be interpreted as

an approximate bound on the cost in detection probability which one

pays for using the u statistic and by failing to optimally estimate any

unknown p_rameters which _ppear in the functions di,

whe2e A( _ ,u) is given 5y

tFA - E Eu IHI]

1
A(_ ,u)=--

_! t2
2

e dt

J
(43)

where:

Moreover,

_(_,_)=

=i

x x

if we define the quantity A ( _, f) by the equation

1
i i t2

_ 2 dt

(44)

(45)
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then from the foregoing equations we may write the total loss in detection

probability as

A(_, u) = A (_, _ ) + A (_ ,u) (46)

which suggests that A ( _ ,I) might in some way measure the consequences

in terms of detection probability of failing to estimate the parameters in

the _i functions when the d. functions are assumed perfectly known.i

Now depending upon the particular functional form which is

assumed for the d. functions the maximum detection probability los.ses may be
i

easily plotted versus false alarm probability by using the well tabulated

cumulative gaussian distribution function. Or equivalently and perhaps

more informatively, the three curves of detection probability PD (_)

PD ( _ ) ' PD (u) versus the false alarm probability PFA may be drawn,

While extensive arithmetic investigations will be deferred until

a later date, it is instructive to look at one particularly simple special

case -- namely d. = d = constant over the observation interval. In this
1

case from equations (41) and (44) we see that:

o- +o-Z/o-z
x y x

s o that

A(_,u ) = 0 (48)

Furthermore from Equation (42.) for the special case of d. = d =
1

constant we obtain

x

ZZ



In other words in this special case the best linear function of
the differences of the observations is just the u statistic itself. Or

in terms of the suggested interpretation for Equation (46) then when

the di are constant the total loss in detection probability by using the
u statistic instead of optimally estimating all unknown parameters-is

due to the failure to optimally treat the unknown parameters in the

_i functions.
The numerical comparisons which we shall make are as

follows. From Equations (49) and (Z4)we see that fixing the value

of _-No-d determines the PD(_) versus PFA curve for the best possible

X

situation --namely where all parametric quantities are assumed

precisely known under H ° and H I. From Equations (47) and (ga)

we see that if in addition to fixing _-Nd we also fix the noise
O-
X

uncertainty ratio _/_x that we determine a PD (_) versus PFA curve

which never lies above the PD (_) versus PFA curve. For a fixed

PFA' the difference in the ordinates is the price paid in detection

probability.

Furthermore since the noise variance in the x measurements

will generally be less than the noise variance in the y measurements,

then this difference in detection probabilities is a rough indication of

the extent to which we fail to optimally capitalize upon the relatively

noise-free x measurements when we use the u statistic.

This situation is illustrated in Figure 3 where _-d was
O--
x

taken to be Z.30 so that 95% detection was achieved in the most favor-

able case for a false alarm probability of 5%. The detection curves

using theu statistic are parameterized by increasing uncertainty ratios

o_/¢_ x to illustrate how the penalty increases with this ratio. In the

limiting case o-/O-yx = 0, the PD(U) curve approaches the PD(_) curve

while at the other extreme, i.e., o-/o- = oo, the PD(U) curvey x

approaches the 45 ° straight line whose equation is PD(U) = PFA"

Z3
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In this case theu statistic is useless since the test has no more

resolving power than a completely random guess which ignores the

data.

Before concluding our discussion of these comparisons, it

is worthwhile to remark that all of the expressions which we have

derived for the penalties in detection probability have depended solely

upon the differences in the means of the observables rather than upon

the mean value functions themselves. This is plausible since it is

actually the size of difference functions d(k) which allows us to resolve

between the expected value of the x observations and the expected value

of the y observations.

Application to the Estimation Problem

As mentioned earlier the actual question of interest is in how

the x.1 and Yi measurements should be employed in estimating the

functions _(k), or equivalently the parameters al, . .. a in Equation (10)
P

given that one of the two hypotheses H ° or H 1 holds. The following

brief comments indicate a possible solution to this estimation problem

which is both intuitively attractive and illustrates the desirability of

performing a statistical test which decouples the hypothesis testing

and estimation problems.

The idea is quite simple. First of all, if it were known with

absolute surety that the hypothesis H ° were true then the x.1 and Yi

measurements could be optimally processed by using the knowledge

of the functional form given by Equation (10) to yield

,h(o) _(p), k) (50)A(°)(k) = _ _a 1.... '

where the Am,_.(_l_... A(O)ap are the maximum likelihood estimates

of the parameters al, ... ap if the hypothesis H were known to be true.^(o) 1,(o) • o
We remark that the quantities a 1' " " " ' a are known computableP

functions of the observations xi, Yi"
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On the other hand, if the hypothesis H I were known to obtain

them the data could again be optimally processed, by using Equations

(i0) and (II) to yield an optimal estimate conditioned upon the hypothesis

H 1 being true allowing us to write:

) ^Ill= ...,a p, k) (51)

where now the A(1) A(1),.... are the maximum likelihood estimates
P

of a I, ... a conditioned upon H I being true so that they also are knownP

computable functions of the data.

Now let z denote an arbitrary test statistic used to test the

hypothesis Ho versus H I, Then z is some function of the data and

has a probability density function say fo(Z) if H ° is true, or fl(Z) if

H I is true. Then in the absence of a priori knowledge about the

probabilities of H ° or H 1 the quantity

fo(z)
P (Ho] z)=

fo(Z) + fl(z)

(5Z)

is a reasonable approximation to the a posteriori probability of H
O

given that a particular value z of the test statistic were observed.

If we similarly write:

A fl(Z)
P (HI Iz) =

fo (z) + fl(z)

then an eminently reasonable way to process the data to estimate

M(k) would appear to be:

A A

(53)

(54)

Now any free parameters which might appear in the density

functions fo(Z) and fl(z) whose values may not be known under the
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hypotheses H ° or H 1 may themselves be estimated from the data so

that (54) offers a way of estimating the parametric functions _ (k) as

a weighted average of the best estimates /_ ? (i(°)(k), _ )(k) under H
O

and HI, where the weighting is done according to our best estimates

of the a posteriori probabilities of H ° and H I based upon the available

observations and the test statistic z. Thus (54) offers a reasonable

way of utilizing a_1"of the data to estimate the parameters.

As an illustration, if the test used is the likelihood ratio test

then Equation (54) takes the specific form:

A
A(k) =

,_(o),., I H )L(xi' Yi' _ _l; o _(°)(k)

A

A (O)(i) i Ho) (xi' Yi' FL (xi, Yi,_ + L A (1)(i) ' d(1)(i) IHI)

+
L(xi. IHl)

A
_(1)(k)

_o ^(i
L (xi, Yi, _()(i) IHo) + L (xi, Yi,_(1)(i),d )(i) IH I)

(55)

where we recall that the L functions are the joint likelihood functions

4_of all of the data with any unspecified parameters be_.g replaced by

their maximum likelihood estimates under the appropriate conditional

hypothesis. Note that everything in Equation (55) is directly computable

from the data.

^ One final comment is in order. The quantities P (Hol z) and

Pl (HI Iz) are usually only estimates of the posterior probabilities of

the hypotheses H ° and H I and as such will exhibit random sampling

fluctuations. From the point of view of estimating the parametric

functions _(k) the importance of choosing an adequate test statistic

z is due to the necessity of obtaining tight estimates of the a posteriori

probabilities. The choice of the test statistic z will be especially

critical when the estimating functi_ s _(°)(k) and _(1)(k) indicate

Z7



drastically different treatments of the data. On the other hand, when

_(°)(k) and _(1)(k) both indicate roughly similar ways of handling the

observations the choice of the test statistic is not of such importance

and we might well wish to content ourselves with a simple and

tractable statistic such as the u statistic which we have already

extensively discussed,
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APOLLO NOTE NO. 230 J. Holdsworth

16 July 1964

A COMMENT ON THE OPTIMUM EMPLOYMENT OF"

DATA FROM TWO INDEPENDENT SOURCES,

ONE OF WHICH MAY BE SUBJECT TO

SYSTEMATIC ERRORS, FOR.

PARAME TER ES TIMA. TION

The purpose of this note is to explicitly and completely work

through the necessary computations for a parameter estimation pro-

cedure which was suggested in Apollo Note 229. The particular example

we shall consider was purposely chosen for its simplicity, rather than

its physical significance, in the hope that as an illustrative example it

might demonstrate the conceptual simplicity of the procedure men-

tioned in the aforementioned note.

We shall assume that we have N independent measurements

x.z and Yi from two distinct data sources and that we are told a priori

that one and only one of two possible contingencies or hypotheses is

in effect. The first hypothesis which we shall call H assumes that
o

there is no systematic error in either data source. More specifically

if H is true then the x. measurements are independent gaussiano 1

samples with a constant unknown mean _ and a known noise variance
Z

o- while the Yi measurements are independent gaussian samples with
x Z

the same constant unknown mean _ but with known variance o- perhaps
Z Y

different from o" .
x

The second hypothesis which we shall call H I is that there

is a known constant bias error b in the x data source but not in the

y data source. That is, if the H I hypothesis holds, the x measure-1

ments are independent gaussian samples with constant mean A+b,

where b is known but _ unknown, and with constant known noise vari-
2

ance o- as before. The Yi measurements have the same distributionx

under H I as under Ho, i. e., they are independent gaussian samples
2

with unknown constant mean _ and known variance G .
Y



Our problem is how to effectively use the data to get a good
estimate of the unknown constant parameter _. It is important to

note that although we do assume the knowledge of the bias error if

H I is true, that we do not know whether Ho or H I holds. Thus our

data must render two fold service - first it must permit us to test

which hypothesis No or H 1 holds or equivalently it must allow us to

make estimates of the a posteriori probabilities of No and H 1 and

secondly having estimated these a posteriori probabilities we must

combine the measurements to obtain a reasonable estimate of the

parameter _.

Expressed quantitatively the hypotheses Ho and H 1 may be

characterized by the conditional joint likelihood functions of the

observed data as shown below.

i i I i

Ho: L(x, Yl Ho) = (2w) N N N exp-_ (xi _ _)2 + _ _ _)Z
o- o-y i=l y j=l

(i)

N N -T

N N eyp - _ (xi --Z (Yi - _)2
Hi: L(x, y ILl1)= (2w) N o- o- o-

x y i= 1 y i= I

(z)

Now if the hypothesis H were known to be true then the besto

estimate of _ is obtained by solving the equation:

8L (x I Yl H°)

8_
= 0 (3)



for _ as a function of the observations. Carrying out the indicated

operations we obtain:

N N

I _ (xi _ _) + _S_---Z z _. (Yi- _)
_x i=I o-y i= !

= 0 (4)

A
which is easily solved for _ to yield:

(2)^ 7 x+ x
_o = 2 2cr + +o -2

x y ' y

(5)

where x and _ are the sample averages of the x.1and Yi measurements

and are given by:

N

ly _x = _ __ xi , y=

i= 1

N

IF
i=l

Yi (6)

In equation (5) we have written _o to emphasize the fact that
A

_o is the conditional best estimate of the parameter _ given that

there is no systematic error or that H is true.
O

On the other hand if H I were known to be true, then since

the value of the bias b under H I is assumed known then a similar

calculation with the function L(x, y I HI) shows that the conditional

best estimate of _ given that akn.own systematic bias exists is:

3



^ (_x°2Ii 1Y x-b= Z
2+cy j_ J

Y

2+ " 2 2 ly,
_ +cr ]x y

(7)

2

t _ /^ - Y 2 b
= _o 10_x2 + o_ ]

Y

(7 a)

Now if we assume that before making the measurements

that the hypotheses Ho and H 1 are equally likely, then after

observing the data the a posteriori probabilities of the hypotheses

are given by:

) L (x, y I Ho)P HolX'Y = L(x,y / Ho )-¥' L('x, yl H l)
(8)

and

( } { )PHli x,y = 1 - PHolx, y = L(x,y} Ho)+ L(x,y I H l)
(9)

where L(x, yIHo ) and L(x, yIHl ) are given by equations (I) and (2).
A

Since 9o is the best estimate of b*under Ho and btl under HI,

then Apollo Note 22.9 suggested that a good composite estimate of

bLwould be:

{ {b_ = P HolX' Y Bo + P Hl lX' y bL1 (io)

4



which is a weighted average of the conditionably best estimates

where the weights are the a posteriori probabilities of the hypotheses

after all of the data have been observed.

Inspection of equations (I) and (2), however, show that the

probabilities P(Hol x, y) and P(HII x, y) are actually functions of the

unknown parameter _ and hence they can not be computed by the

estimator. They may, however, be estimated in a very satisfactory

manner by following the following procedure.

L(x, y! Ho) and L(x, YlHl) are not

numerically known to the estimator because they are fuctions of the

unknown parameter _. However, since _o is the best estimate of

given that H is true then L(x, ylH o) may be approximated by
O ^

o(x, y) where L (x, y) is obtained by substituting the expression for
A

}_o given by equation (5) wherever the parameter _ occurs in equation
A

(I). The quantity Lo(X , y) as just defined is only a function of the

observables and hence may be computed by the estimator. Similar

remarks apply to Ll(X , y) which is obtained by replacing _ in equation
A

(Z) by _I as given by equation (7).

Mimicing equations (8) and (9) we now estimate the a posteriori

probabilities of the hypotheses by:

A

o 1

P H ° Ix, y = ^ ^ =

L (x,y)+ Ll(X, y)O
1 + £1(x, y)/£o(X, y)

and

Hll x, y = 1- P HoI'X , y

A A

where the estimator P(Hol x, y) and P(HII x, y) are now functions

only of the observed data and the known parameter b.

(ii)

(lla)

5



^

In fact, from equations (11) and (lla) we see that P(Ho{ x, y)

and P(HI{ x, y) actually depend only upon the ratio Ll(X , y)/Lo(X, y).

.At any rate the estimator is now in a position to estimate the para-

meter _ by:

"_ = P Ho{X' Y '_o + Hl{X' y _1

where everything in (12) is computable from the data and the known

noise variances and bias error.

Now performing some tedious algebra it is easy to show that

Ll(x,Y)
A

L (x,y)
o

- exp-

Y

(IZ)

(13)

Now for large N if H o

very small so that:

or

 (Ho)P {x, y _ 1
i

^ A

_ t_o

is actually true then x - y will be

(14)

(i5)

Conversely, for large N if H 1 is actually true then

x - _d and the argument of the exponential in (13) becomes

N b 2
so that for large enough N,

p HI{ x, y _-_ 1

and
,__:;̂ ^

(16)

(17)

6



A A
However, since Mo and MI are the conditionally best esti-

mates under No and H I then equations (14) through (17) show that

asypmptotically our estimate discriminates perfectly and for large

samples is a minimum variance estimate.

7



The Bissett-Berman Corporation 2941 Nebraska Avenue, Santa Monica, California EXbrook 4-3270

APOLLO NOTE NO. 231 B. Murphy

14 July 1964

PARTITIONING BOOST-COVAR.IANCE MATRIX

This note is written to clarify a few cloudy points concerning

the derivation of the state error covariance matrix during boost con-

dition. In particular this note elaborates an Apollo Note 185.

In Note 185 (p. ll), an expression for Pn+l (error co-

variance matrix after measuring acceleration at t n) is found to be

Now it is desired to partition this matrix according to those

parts that deal with accelerations, where the subscript 1 refers to

acceleration quantities and, 0 to be non-acceleration quantities.

Thus

 00'n 1 1'n 11IA:
1D10, n+l_ll, n+l C D

and



Finding a few necessary matrix products

EA+FC
EB+FD 1

= [(EA+FC) T

Now introducing these into the given expression

Dn+ 1= +

[(EB+ FD)
.

EAE T + FCE T + EBF T + FDF T

1

EA+ FC

EB+ FD 1

If, at this point Pn+ 1 is partitioned,_ in general, P00, n+ 1 will not

only involve _D00 ' n+ 1' (A) , but the rest of the _Dn+ 1 matrix also'

Thus the statement on bottom of p. 11 (Note 185) does not follow.

Evenletting the ]D 01 and ]D 01 matrix equal zero (A= C= 0) the

resulting expression

2



(EA) T EAE T + FDF T

+_n+l

EA FD

still involves 7_1I, (D) if partitioned.

However, if the fact that ;%1 (F) = 0 is now introduced, then
n J

Pn+ 1 = ooI' )TA (E
+

0
[ jl[jEAET + _n+l FA 0

:[Ao
0 D

+ E ]_I 1
(EA)T EAET + _n+l EA 0

0 0

and

-i

P00, n+l = A + (EA)T [EAET+_Ln+I] EA

or

P00, n+l = _900, n÷l + (%, n+1%0,1%+ I) T

I_, n+1%0, n+1%, n+l + _n+l] n+l 0, n+ iI

as in the final expression in Note 185.

3



The Bissett-Berman Corporation 2941 Nebraska Avenue, Santa Monica, California EXbrook 4-3270

APOLLO NOTE NO. 232 C.P. Siska

2Z July !964

TRACKING THE INITIAL PHASE OF THE TRANSLUNAR

ORBIT WITH STATION LOCATION

ERRORS INCLUDED

1. Introduction

The results presented in this note augment the data appearing

in Section 3 of Apollo Note No. Z18, whichpresented orbit prediction

accuracies without including any station location errors.

This note also shows the station location uncertainties when

the tracking data is used to up-date the estimates of the station

locations, It is ass_ed that the DSIF stations involved (in this

case, Ooldstone) have no station location error, while the other

stations have an initial location uncertainty of i00 meters.

Station Trackin G Interval

Minutes After Injection

0 6 I0 15 20

Guam

Hawaii

Goldstone

Guaymas

t

i
i

120

. Tracking Data

- Range (o- = 15 meters) and two angles (x, y mount,

each with o-= 0.8 milliradians), one observation

per second.



Range and angles are biased with a priori range

bias estimate only (o- = 200 meters)

The range mode is time-shared

o Station Location

- No error in estimate of Goldstone's location

- Estimates of the location of Hawaii, Guam, and

Guaymas have a priori uncertainty of 100 meters

5. Re s ult s

Position - Velocity Uncertainty at t = 20 min.

after injection (t = 0 coordinate system)

x = .ii +03m

y = .62+02m

z = .69+02m

RMS Miss = . 14 + 03 m

Note:

= .76 - Ol m/s

: . Z6 - Ol m/s

= . Ii + O0 m/s

P_MS Velocity = . 14 + O0 m/s

Read x as . 11 x 10 +03 etc.

Uncertainties in the estimates of the position/velocity at the

LSOI, perilune radius, bias in the measurables, and station location

are shown in Tables 1 through 3.

Z



Table I.

Uncertainty in Estimate of Vehicle's Position

and Velocity at the LSOI

Time of
Last
Data

(rain)

X

(m)
Y z

(m) (m) (m)

RMS

Miss

(m)

RMS

Velocit_

(m/s)

20

60

iZO

.14+04

.67+03

I.62+03

•25+05

•21+04

•53+03

•19+04

.15+04

.34+03

•62+00

•52-01

I. 15-01

I .........

•68+00

•60-01

•27-01

•19-01

•16-01

.44-02

•25+05

.Z7+04

.88+O3

.93+00

.81-01

.31-01

Note: Moon-centered coordinate system

Table Z.

Uncertainty In Estimate of Perilune Radius

Tim e of
Last Data

(rain)

Z0

6O

120

With Station

Location Errors

1i, 000 meters

i, ZOO meters

920 meters

Without Station

Location Errors*

6,640 meters

346 meters

116 meters

* From Apollo Note No. Z18

3



Table 3.

Uncertainty in Updated Estimates of Bias in the
Measurables and Station Locations

Hawaii

Guam

GuaymasJ

Time of

Last
Data

(rain)

20

60

120

20

6O

!20
I

Z0

6O

120

.30+02

•15+02

F.11+02

.26+02

I 22+02

INa

I.68+03

!.41+02

Bias Estimate

X

(tad)

•35-04

•20-04

.12-04

I
•3 1-04

• 16-04
!

i " 12-04

i •35-04

•35-04

I"35-04
t

"•18-04

!.12-o4
I.

f

(m)

•54+02

,38+02

.31+02

.70+02

.47+02

.40+02

INA

.57+02
•49+02

Station

Location Estimate

.,..,. | l
-i--J- y

(m)

.63+02

.36+02

.22+02

.80+02

.71+02

,69+0_

.31-04

.28-04. _2.-04

t

]Na
•22-04

• 11-04

NA

•48+02

•31+02

•81+02

.70+02

.55+02

•74+02

.60+02

,_+0_

NA

•83+O2

.73+02

A priori range bias o-= 200 meters

Apriori station location o-= i00 meters
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The Bissett-Berman Corporation 2941 Nebraska Avenue, Santa Monica, California EXbrook 4-3270

APOLLO NOTE NO. 233 H. Engel

21 July 1964

OPTIMUM CORRECTIVE BOOST PROGRAM, I

There will be several notes on the subject of optimum cor-

rective boosts during the translunar and transearth phases of the

Apollo mission. This first note is intended to justify the use of a

patched conic instead of an integrated trajectory for these compu-

tations, and to show that a linear analysis is applicable so that the

Monte Carlo method need not be used. Further, it will demonstrate

that there is really no problem in determining an optimum corrective

boost schedule for the translunar and transearth trajectories.

The aims of this note, outlined in the preceding paragraph,

can be fulfilled for several reasons. First, the actual injection

errors in the translunar and transearth trajectories are small.

Second, using the MSFN for navigation, these injection errors can

be determined within very short times. Third, insofar as boost

costs are concerned, we are interested only in determining the

incremental costs of performing corrective boosts, and not in

determining the total boost cost of the entire mission.

The RMS velocity errors at translunar injection are of the

order of 14 to 20 ft/sec., or less. In translunar injection, accord-

ing to Apollo Note No. 232, the uncertainty in velocity as determined

by the MSFN, is 4 in/sec (= 0.1 m/sec) at twenty minutes after

injection. The RMS injection error leads to a position error of just

24,000 ft. (= 20 rain x 60 sec/min x 20 ft/sec) in this time, and

the velocity error is still about 20 ft/sec. The velocity error is

known well enough at this time to permit a correction to be made.

If the correction is made perfectly, the vehicle is on a course to

reach the same point in space (reference trajectory perilune) at the

same time as a vehicle on the reference trajectory, and is displaced

from the reference trajectory by only 24,000 ft. initially, and smaller



and smaller distances as time goes on. Thus the reference trajectory

and actual trajectory are very nearly identical, so the same Q matrices

(transition matrices) may be used for both in determining the necessary

magnitudes and directions of corrective boosts. Further, the errors

and corrections are small enough that these may be computed from the

Q matrix, i.e. , linearly. In support of this we provide Figure i,

taken from pages 16 and 22 of NASA Technical Note TN D-1812,

A Study of Some Transition Matrix Assumptions in Circumlunar

Navigation Theory, comparing transition matrices for varying

injection conditions, and computed by trajectory integration. It can

be seen from the figure that even large changes in injection conditions

do not greatly alter the Q matrix, so that for small perturbations

we may employ the Q matrix determined on a reference trajectory.

The fact that large perturbations do not substantially alter the Q

matrix also indicates that we may use linear perturbation analyses

to determine the optimum boost program and the corresponding

boost requirements, so that Monte Carlo methods need not be resorted

to in order to find the optimum boost times, the expected boost require-

ment, and the statistical distribution of boost requirements.

A comparison of patched conic and integrated trajectory

solutions for the Q matrix is currently being performed and will be

reported in a subsequent ]Bissett-Berman Apollo Note. For the

moment, however, we shall only point out that we are attempting

to ascertain only incremental boost costs, not total boost costs.

Thus, the fact that there is a i00 ft/sec difference in magnitude

of velocity at perilune between the patched conic and integrated

trajectory solutions is of no great importance; we do not charge

this i00 ft/sec, difference to the corrective boosts.

Let us say that the perilune velocity determined by the patched

conic is 7000 ft/sec. , that the perilune velocity determined by the

integrated trajectory is 7100 ft/sec., and that circular velocity is

5000 ft/sec. In both cases, an error of, say, i0 ft/sec., in the

2



circular component of perilune velocity costs a boost of 10 ft/sec.

to correct. In the patched conic, a radial velocity error or out-of-

plane error of 10 ft/sec, costs 0.025 ft/sec, to correct

  000 000 /
while in the integrated trajectory case the corresponding cost is

O. 024 ft/sec.

. c  oo- ooo:},
so that the terminal corrections to correct for velocity errors at

perilune are very nearly the same for the patched conic and integrated

traj ectorie s.

On transearth trajectories the situation is similar. The on-

board guidance system will result in injection errors of 4 ft/sec.

Within two hours after injection, according to Bissett-Berman Apollo

Note No. 218, the velocity is known to 8 inches/sec, and the corre-

sponding re-entry dive angle is known to 0. 029 degrees, so that

practically all of the necessary corrective boost can be made at this

time.

Thus it appears that on both the translunar and transearth

trajectories the initial corrective boosts can be made when least

costly, soon after injection, and the boosts can almost perfectly

correct the injection errors. As a result, the remaining errors are

very small and can be corrected at any time during the trajectory

with very little boost cost. Consequently, there appears to be no

real problem of determining an optimum corrective boost schedule.

Numerical solutions will be given in subsequent notes.
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.364 x I0z

(.364 x i02)

[.355x 10z]
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Figure i.
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[.io7 _ ioI

•794

(.795)
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A_o AYo A+o 300 ft/sec.j large

Figure i. (continued)
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The Bissett-Berman Corporation 2941 Nebraska Avenue, Santa Monica, California EXbrook 4-3270

APOLLO NOTE NO. Z34 M. Blas gen
ZZ July 1964

EARTH-MOON DISTANCE TREATED AS AN

ADDI TIONAL NUISANCE PARAMETER

FOR ORBIT DETERMINATION

The question of the effect of poor knowledge of the Earth-Moon

distance on orbit determination has been treated approximately in

Apollo Note No. 226. In that note it was demonstrated that an un-

certainty of 400 meters in the Earth-Moon distance has very little

effect on the range-rate data. However, the important question is

the effect this uncertainty has on the estimated orbit parameters,

these estimates being derived from range and/or range-rate measure-

ments.

Thus this note considers another nuisance parameter, a14 ,

the Earth-Moon distance (assumed a constant) , and derives the

relationships necessary to add another row and column to the infor-

mation matrices for both range and range-rate. The technique, if

and when implemented on a computer will demonstrate the effect

uncertainty in a14 has on the covariance matrix of the orbit parameters

at any point in the trajectory. Any a priori uncertainty may be used,

and a14 may be updated.

Analysis

The commonly used vector diagram showing the relationships

between the Earth, Moon, and vehicle is pictured in Figure I.

In addition, we define the following:

- R m - l ff_ t-'- Earth-Moon distanceal4 ,m,

Station-vehicle distance

R
s

= --s • R s = rate of change of station-
vehicle distance



  ehicle
s

Figure I.

If s and s are measurables, in order to assess the effect of

poor knowledge of the Earth-Moon distance on the orbit parameters,

we must evaluate two partial derivatives which enter into the infor-

mation matrix:

8 s and 8"--L

8a14 8a14

This can be done as follows:

_S

8a14

The measurable s can be related to the vector R
S

Z _ m
s = R " R

S S

_)S
s = R

aal4 s

8R
S

m

8a14

(I)

(z)

Or



_s

aal4

R
S

S

w

81%
S

8a14

In order to evaluate

81%
S

8al----_ , we use Figure 1, noting that:

(3)

P's = R + Rm'Rd (4)

and

8R 8R
S m

8a. 8a.
J J

a_ a_'d
+

8a. 8a.
J

(5)

for j - 14

aR
S

Oal4

8R
m

8a14
(6)

and thus, from (3) and (6)

1%
8s s

8a14 s

81%
m

_R
m

(7)

then

Here we know that

s§ = R "1%
S S

8_ 8s --
s -- + _ = 1% "

8a14 8a14 s

81%
S

aal4

81%
S

_)a
14

(8)

(9)

3



F •
8§ 1 8R . 81%

= __ _ . _ +_ . s § 8s
8a14 s s 8a14 s 8a14 8a14 ] (1o)

and from (3) and (6)

= -- _ - __ m -- m
8a14 s s s " 8a14 + Rs " 8a14

The expressions for Rs' Rs' s, and § are already programmed

into the Bissett-Berman Error Analysis Program, and thus only the

81% OR
m n]

and need be evaluated,
term 8a14 8a14

at all if the Moon's orbit is assumed circular.

systems, the expression for 1% is
m

but this is no problem

In the x y m coordinate

(Ii)

1%
m

z
m

1% cos _ T
m m

R sin _ T
m m

and thus

and

81%
m

8a14

e_

81%
m

81%
m

OR
m

8a14

cos _ T
m

sin _ T
m

m

_0
m

sin _ T
m

cos o T
m

0
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APOLLO NOTE NO. 235 C. P. Siska/

L. S. Lustick

23 July 1964

TRACKING THE LEM IN A PARKING ORBIT

AT 8 N. MI. ALTITUDE

i. INTRODU C TION

Assume that a Hohmann transfer is used by the LEM to

rendezvous with the CSM and the rendezvous position is to be visible

to the Earth. Then one operational procedure is to insert the LEM

into an 8 n. mi. altitude parking orbit at the end of its powered ascent

phase, and then inject the LEM into a Hohmann transfer when it

arrives approximately 90 ° from the Earth-Moon line.

This note presents estimates of the uncertainties in predicting

the LEM circular orbit for a variety of situations. The particular

Earth-Moon relationship corresponds to a translunar injection (Pacific

Ocean) from the second Earth parking orbit.

For nominal values of the LEM a priori orbit (insertion un-

certainties) and nuisance parameters (station location, speed-of-light,

etc. ), the reduction in the uncertainty of the insertion conditions is

determined as a function of tracking time after insertion into the park-

ing orbit. This is done for various combinations of insertion positions

(0°, 30 °, 60 ° longitude) and number of tracking stations (i, 2, and 3).

A few excursions from the basic cases described above were

attempted. First, the effect of dropping the nuisance parameters is

investigated for all cases. Secondly, in selected cases, an improved

a priori orbit is used, which represents the potential accuracy of the

MSFN tracking the LEM powered phase to insertion. Thirdly, an

improved set of a priori values for the nuisance parameters is used

in lieu of the nominal set. Such improved set can be the result of

tracking the CSM in its parking orbit around the Moon. In order to



assess this possibility, the uncertainties in the nuisance parameters

are determined for tracking one, two, and three revolutions of the

CSM parking orbit. These results are also presented and serve as

a basis for defining the improved set of nuisance parameters.
It is noted that for 3 stations tracking in a "3-way Doppler"

mode, the two stations not transmitting can have a systematic clock

rate error (i.e., an _ bias). Because of present matrix size limitations

in the computer program, only one station can be defined as having an

bias in order not to exceed the size limitatiohs.

Z. REFERENCE ORBITS

Consider the Moon's orbit plane as the equatorial plane (0°

latitude) and the Earth-Moon line as defining the prime meridian

(0° longitude). We then have the following data.

2. 1 CSM Parkin$ Orbit

circular orbit at 80 n. mi. altitude in E-M plane

Z.Z

ao

b. starts at 0° latitude, 180 ° longitude

c. sublunar point at start is 18 ° N_ latitude,

longitude, geocentric coordinates

LEM Parking Orbit

a.

and 180°W

starts at 0 ° latitude and 0 °, 30 °, 60 ° W longitude, 8 n. mi.

altitude

motion is in the E-M plane

sublunar point is 17 ° N latitude and 23 ° W longitude,

geocentric coordinates

3.2

A PRIORI DATA

Lunar Parking Orbit

None

Nominal LEM Parking Orbit

x = 637 m

y = 483 m

z = 697 m

k = 1.22 m/sec.

= Z. OZm/sec.

= 2. i0 m/sec. 2



3.3 Improved LEMParkin_ Orbit

x = 10m _ = .03m/sec.

y : Z0m _ = I m/sec.

z = 40m _ = Z m/sec.

3.4 Nominal Nuisance Parameters

_M

AC
u

c

bias =

= 4 x 10 -5 (Moon's gravitational constant)

1 x 10 -7 (velocity of light)

0.3 x i0 -z m/sec. (clock rate bias for Ascension only)

f

x" = 50 m |

y" = i00 m

z" = i00 m

location of each station with x"

approximately in altitude

direction
1

3.5 Improved Nuisance Parameters

A_ M -7
= 6xlO

_M

Ac-- = Ix i0 "7
c

bias = 0.2 x i0 'g m/sec.

x" = 13 m.

y" = 13 m

z" = 13 m

(Ascension)



4. Z

TRACKING DATA

The following stations are used in various cases,

3 stations, Goldstone, Madrid and Ascension

2 stations, Madrid and Ascension

1 station, Ascension

Range-rate o- = 3 cm/sec,

Ascension only.

one second samples, bias for

4.3 Tracking intervals for each insertion case from insertion to

loss of visibility are approximately as follows:

a. 0° longitude yields 0 to 30 minutes

b. 30 ° longitude yields 0 to 20 minutes

c. 60 ° longitude yields 0 to 10 minutes

Position and velocity uncertainties are presented without

regard to loss of visibility.

5. RESULTS

The uncertainties in the CSM parking orbit and the updating

of the a priori nuisance parameters as shown in Table i.

Tables Z through 6 present the LEM parking orbit uncertainties

for different numbers of tracking stations, insertion longitudes, with

and without the nuisance parameters. Table 7 shows the effect of an

improved a priori orbit (i. e. , knowing the insertion condition more

accurately) and Table 8 indicates the effect of having improved estimates

of the nuisance parameters.
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Table 2.

3 Stations - Nominal A Priori Orbit -

Nominal A Priori Nuisance Parameters

t

(rain)

I0

Z0

t

t=0

longi-
tude

0

3O

60

0

3O

6O

i

o

3O

60

_30
I
i6o
J
I

i

0

30

6O

x

(m)

m

208

368

44.9

87.3

118

40.5

66.8

32.3

37•5

17•0

22.3

8.24

10.7

8.81

Y

(m)

500

319

144

197

_ 91.8

i01

155

26.8

27.1

34.5

11.7

z

(m)

694694

I

I

665666

t666
!

{529

536

i534

i389
!398
1404

i

16.3 !360

12.8 1368

5• 72i374

k
(m/s)

• 174

.309

•0053

.140

•258

I

•0041

•103

.153

.0037

•016

.025

.0034

•0065

.020

(m/s)

•293

• 173

I• 298

: •237

I • 144
i

• 158

• 176
;

•084

J

•037

•025

.012

.011

.0075

.010

I

s)](m/

•732

•746

!
.703

709
;
J

724

I

J

1.673

i.677
t

!.689
l
}

_.501
i

.500
i.507

•294

295i.

301

RMS
Miss

(m)

m

880

848

t

682

700

683

i540

562

536

391

400

405

1361

368

I374

f

RMS

Velocity

(m/s)

•807

•825

I
•764

•760

•782

I •707

I .711
i
t

I .503
.501

•5O7

• 294

.295

t .3oz

4

6



Table 3.

3 Stations - Nominal A Priori Orbit -

No Nuisance Parameters

t

Imin)

10

20

30

t=0

:longi-
tude

[deg)

0

30

60

o

3O

6O

0

:30

!60

0

3O

60

0

30

60

X

(m)

.59.2

Z05

368

26.7

64.4

104

12"5 1
24.5

21.8 !

T

i 8.66
4.73

[
IZ.Z

5.43

3.17

7.18

Y
(m)

551

499

317

i
116

I

'121

Z

(m)

694

694

1694

665

!66-5

6z. 3 i666

47.4 !517

F

52. i !522

ll• 3 i520

22• 8 !Z35

13.9 i237

4.25i235
[

13 6 IiZ6

Z: 171126

3.84! 126

(m/s)

OO68

• 165

.0039

.055
)
I

1.o98

.0025
•033

.064

i

.0022

.013

.020

.0016

•0037

.010

(m/s)
l

.182

i"158 1
I!o093
1

' 114
t

_.093

_.055

I

!.070

!.o57

i. 035

!.0178

!.ozo

1. oo94

i. oo95
1.0038

_.0041
L

Z

(m/s)

.301

.301

•302

.212

.Z13

.214

• 199

•300

.201

.168

• 168

.169

i.133

. 133

!.134
I

RMS
Miss

(m)

888

879

847

I
676

679

677

520

525

570

236

238

235

127

126

126

t
I

RMS

Velocity

(m/s)

.351

.352

•357

.241

.239

• Z41

i .211
.Zll

•314

.169

•170

i . 170

•133

•133

•134



Table 4.

Z Stations - Nominal A Priori Orbit -

Nominal A Priori Nuisance Parameters

I*
(rain)

J
2

10

ZO

3O

t=O
ilongi-
[rude
i(deg)

I

Io

_30

160

0

30

"60

0

3O

6O

0

30

6O

0

30

6O

X

(m)

71.6

215

318

56,6

166

252

46.2

143

36. 1

38.8

18.0

Z4.2

11.8

12.9

11.6

i,

¢

y ! z

(m) i (m) I (m/s)

577

535

358

318

47Z

299

146

1369

i695 •0096

_695 t 597

695 il. 30

666 I "009Z

666 .374

i667 .992

i

_:531
i

,!539

41• 5 1536

32.6 ! 394

40. 1 _!404

12.•4 411
q

20.0 i374 .0053

14.8 i384 .0080

6. 871390 . 024
i

•0070!

•Z39

•237

•0055

•020

.028

Y
(m/s)

f

l• Z01•03

749

•976

.653

•570

(m/s)

•775

.780

•826

•740

.731

•782

•233 I "683

•4ZZ ! .695

• 134 !,.701
i

•0400,!

•033 !•014

•0146 I

•0090 1

.012 I
i
i

•524

•524

.532

•311

•312

.319

'_jRMSMiss

(m)

1906

i903
i

869

740

833

773

552.

669

538

!

397

407

411

375

384

390

R_MS

Velocity

(m/s)

1.43

1.43

1.71

1.22

11.05

1.38

.7gZ

•847

•752

•526

•525

•533

.311

.313

•320



Table 5.

Z Stations - Nominal A Priori Orbit -

No Nuisance Parameters

t t=O

, • ,llongi-

tmlnj Irude

i(aeg)

Z

ZO

I0

x

(m)

30

Y
(m)

0

3O

6O

0

30

60

30

6O

0

3O

60

0

3O

i60

z

(m)

6Z.4 577

ZI3 535

318 358

44.5 318

163 47Z

Z50 298

i

I z9.6 146

139 368

Z8.0 I 39.3

t

11.8

6. Z8

15.4

7.57

3.86 I

8"761

I

695

695

695

666

666

667

5Z0
I

5Z8

5ZZ

21.8

5. g I 240

18.8 127

Z.64i iZ7

4.67i127
I

!

x _

(m/s)!(m/s)

.0083 ii.ZO
l

•596 !i.03
!

i. 30 I .747

.00781 .975

.374 i.653

• 99O i • 569

I

,I oo51!. .z_z

.z38 i .4zo

.Z37 '_. 134

.0029 .0245

.0190 .0310

.025 .0120

.0022 .0130

.0045 .0047

.012 .0050

']RMSMiss

(mls) I (m)

•448

•447

•520

.357

.315

.430

.g14

•Z57

.ZI9

.170

• 170

.171

.134

.135

•135

i

905
90Z

I 869
i
!

i739
_83Z

i77Z

{658

5Z4

241

241

241

129

127

ilZ8

RMS

Velocity

(m/s)

I.Z8

1.27

1.59

I.04

•815

l l. Z2

.315

.547

.349

I .17Z

i . 174

I . 173

.135

.135

.136

9



t ®2
0 C)

(_in) __!
°r-I

With

2
With-

out

With

5 With-

out

WithJ
10 I With-

out

" i With

gO With-

out

With

30 With-

out

Table 6.

1 Station - Nominal A Priori Orbit

0 ° Longitude at t = 0

l
Ix ! y

(m) (m)

80.0 160Z

71.9 !602

f34663.9[
I

t
53.6 }346

!

i

53.9 199

40.6 199

40.9 i 48.9

17.1 t 47.9J

16.4 I 33.1

10.7 I 31.9

Z

(m)

697

697

697

697

697

697

697

697

697

585

i (m/s)

I

. OZO

.019

1.019

i 018

t

.019

.018

1 018

017

c

i o18

i 01vi "

I

I(m/s)

i.22

1
1.22

il.0z

ii.02

.316

• .315

047

.035

OZl

018

• RMS
Z

Miss

(m/s) (m)

i

2.10 9Z5 1 2.43

Z. lO !9z4 ! z.43

, f i;
Iz._o i78_ f a.a3
!
I

2. i0

I

2. I0 2. 12

2. i0 726 2. 12

p.

2. i0 699 i 2. i0

Z. I0 698 I 2. i0

Z. lO I 680. i Z. lO

t

Z. i0 _ 586 i 2. i0

I

RMS

Velocity

(m/s)

r

1780! 2.33

72.7

10



Table 7.

3 Stations - Improved A Priori Orbit-

0° Longitude at t = 0

i t(rain)

{0

k

o_
m
"_ b4

o

X

(m)
Y
(m)

Z

(m)

I0

Z0

3O

With

With-
out

With

With-

out

I

With

With-
out

With

With-

out

9.67

6.64

9.64

5.8Z

9.61

5.18

6.Z0

4.17

19.7

18.6

19.5

17.1

15.3

13.3

1Z.4

10.3

40.0

40.0

40.0

39.9

i
39.5

39.8

38. Z

(m/s)

!. 0049

.0019

.0039

.0018

.0034

.0017

.0031

(m/s)

.232

.105

.047

.040

.01Z

.011

.0086

.O014 .0073

(m/s

•690

.191

•667

.137

.404

. 114

.ZOO

.ilZ

RMS

)iMiss

(m)

45.6

44.6

45.5

43.8

43.8

42.0

42. Z

39.7

RMS

Velocity

(m/s)

.7Z8

.Z18

.669

• 143

.404

.I15

.ZOO

.113

ii



Table 8.

Improved A Priori Nuisance Parameters -

Nominal A Priori Orbit -

0° Longitude at t = 0

t

(min)

Z

5

i0

20

3O

No.

of

Stations

2

3

2

3

x

(m)

44.5

26.8

Z

3

Z

3

29.6

14.9

11.8

9.26

7.62

5.73

Y
(m)

577

m

318

118

146

57.0

31.5

24.6

18.8

14.4

(m/s)

695

666

665

5Zl

i 518
I

257

256

191
i

! 185

(m/s) Cmls) (m/s)

.0084 1.20

.0080 .975

.0040 .131

.0052

i
1.0027

.0032

.0024

I
•OO26

.0019

•232

.086

.0245

.0190

.0129

!.0100

.395

.268

1
i

.274

.258

.229

.219

• 177

• 170

RMS

Miss

(m)

905

I
f

739

676

i
542

522

259

257

192

186

RMS

Velocity

(m/s)

1.05

•299

•359

•272

J
o. 230

.220

.178

.170

12
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APOLLO NOTE NO. Z36 H. Engel

Z9 July 1964

I_ADAR MODES FOI_ VARIOUS PHASES

OF THE APOLLO MISSION

Introduction

This note suggests the mode or modes of operation of ground

radars that should be employed in the Apollo mission, and points

out in which portion of the mission data from the on-board navigation

system can substantially improve the accuracy of estimates of vehicle

position and velocity.

Earth Orbit

In the Earth orbiting phase the vehicle is tracked by C-band

radars with range and angle observations having standard deviations

of Z0 to 30 yards and 0. Z and 0.5 mils. The C-band transponder on

the vehicle is capable of replying to interrogations from several

. _a_ S.ground _"; -

in this Earth orbit phase it is worthwhile to use angular data

because of the short distance between the ground radar and the vehicle.

A subsequent note will indicate whether there is a substantial gain in

using two radars in this phase if two radars can see the vehicle.

Reference Apollo Note No. Z18.

Translunar Injection

Range and angle data from the C-band radars on the ground

can be used during translunar injection. A unified S-band radar

can also track the vehicle from some time after SIV-B burnout,

again using range and angle. Reference Apollo Note No. 218.



T ranslunar T raj ectory

The unified S-band system is used for translunar flight. It has

a range accuracy of 15 m for one minute observations and a range rate

accuracy of 3 cm/sec for 1 sec observations. At times several ground

stations can see the vehicle. If the range mode is used and data from

more than one ground station is desired, the ground stations must

tin_e-share the - _ ; _- ^ "_o_-w_r_ _ransp_n .... If the range rate mode is

employed, the on-board transponder receives signals from one ground

radar and transmits to all (called three-way Doppler). Calculations

indicate that the time-shared range mode and the three-way Doppler

mode yield approximately the same accuracy estimates of the orbit.

Reference Apollo Note No. 218.

Lunar Orbit Injection

Lunar orbit injection takes place out of sight.

Lunar Parking Orbit

The unified S-band radars may be used either in the time-shared

range mode or the three-way Doppler mode for determining the CSM

orbit about the moon. Reference Apollo Note No. 218.

LEM Descent and Ascent

The unified S-band radars must be used in the three-way

Doppler mode if the MSFN is to monitor the powered flight portions

of the LEM descent and ascent. The three-way Doppler mode is also

preferred for the coasting portion of the LEM trajectories to avoid

the problems of frequent switchovers in the time-shared range mode.

Reference Apollo Note 185, et. al.

Rendezvous Maneuver

The MSFN is presently useful in the rendezvous maneuver

only if the rendezvous occurs when the angle formed by the Earth,

Z



Moon and CSM is approximately a right angle, so that the CSM and

LEM are visible and so that the displacement between the CSM and

LEM is approximately in the direction of the Earth-Moon line. In
these conditions one S-band radar may be used in the range mode to

find the distance between the CSM and LEM. Reference Apollo Note
No. 227.

T ran searth Injection

Transearth injection is not visible to the MSFN.

Transearth Trajectory

The three-way Doppler mode using the S-band radar is satis-

factory for the transearth trajectory. Although separate computations

have not been performed, it appears that the time shared range mode

may also be employed. Reference APOllO Note No. 218.

Use of On Board Data

Except during or immediately after a powered portion of flight,

data from the on-board navigation system is not particularly useful to

the MSFN in determining vehicle position and velocity. When the

MSFN has tracked the Apollo vehicle in any portion of its flight for

more than just a very few minutes, the MSFN can determine vehicle

position and velocity far more accurately than can the on-board

system, in any phase of the mission. As a consequence it is useful

to combine data from the on-board navigation system with that obtained

by the ground radars only for use as a priori data to be used as a

starting point for MSFN computations. Reference Bissett-Berman

report "Capabilities of MSFN for Apollo Guidance and Navigation",

Apollo Notes Nos. 185, 218, and many others.

3
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APOLLO NOTE NO. 237 B_ Saltzberg

J. Johnson

V. Gur ske

24 July 1964

ANGLE OF ATTACK. DETERMINATION BASED

ON INERTIAL MEASUREMENTS

INTRODUCTION

The purpose of this note is to describe a method for determining

the angle of attack during Earth launch using inertial measurements

and an a priori knowledge of the aerodynamic properties of the vehicle.

A simplified model is used for relating the angle of attack to the

inertial measurements and the other parameters involved in specifying

the dynamic equilibrium of the vehicle. Using this model a perturba-

tion error analysis is performed to establish the sensitivity of the

angle of attack to perturbations in each of the parameters involved in

the model. The ultimate uncertainty in the angle of attack can then

be estimated from the sensitivity coefficients combined with the un-

certainty in our a priori knowledge of the unmeasured parameters,

and the uncertainty of the parameters measured by the inertial mea-

surement unit.

The simplified model considers the planar problem and derives

an implicit expression for the angle of attack by writing the equation

for dynamic equilibrium along a line normal to the longitudinal axis

of the vehicle, lying in the pitch plane of vehicle. In missile appli-

cations, simple quadratic expressions have been used to estimate the

variation of the aerodynamic force in this direction as a function of

angle of attack, and therefore this procedure was chosen for the

present analysis. Originally we planned to derive _ from three rela-

tionships (one equation for the angular momentum and two force

component equations) but an examination of the uncertainties in the

parameters which enter in through two of the equations indicated that



the simplified model would be equally meaningful and greatly reduce

the complexity of the analysis. By writing a force equation in a

direction almost normal to the thrust we thereby minimize the effect

of thrust uncertainties, since thrust enters through the sine of the

gimbal angle, _, which is small. Thrust errors along the missile

axis significantly degrade the accuracy of angle of attack determination

since thrust enters through the cosine of the gimbal angle and therefore

the equilibrium equation along this axis is not used. Similarly, in the

case of the moment equation, large uncertainties are introduced by

virture of the large fluctuations in the location of the vehicle's center

of gravity and center of pressure, and the resultant uncertainty in

the moment arms make this relationship unsuitable for estimating

angle of a-ttack. The details of the analysis are outlined in this note

and some error estimates are given.

ANGLE OF ATTACK ANALYSIS

Figure 1 is a diagram of the vehicle in an inertial frame of

reference (x, y) It is assumed _ha_ the lateral distance covered by

the vehicle in the time that it spends in the atmosphere is a small

fraction of the Earth circumference, and therefore we can establish

an inertial frame such that the gravitational acceleration is always

in the negative y direction.

below:

T

W

N

A

V.
1

V
W

The symbols used in Figure i are defined

thrust

weight

normal component of aerodynamic force

axial component of aerodynamic force

velocity of the missile in the inertial frame

velocity of the missile relative to the wind

angle between the thrust vector and longitudinal
missile axis

pitch angle
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is

The equation for dynamic equilibrium in the direction of N

N - T sin _ - W cos _ = - rn_, sin _ + rnv cos
x y

when _ and v are the x and y components of inertial acceleration,
x y

respectively, and m is the instantaneous mass of the missile. The

relation between normal force N and angle of attack _ is of the form

, = CN/

when p is the atmospheric density and S is the effective cross-

sectional area of the missile. CN/_ and A % 2 are called the lift

curve slope at zero angle of attack and the non-linear term, res-

pectively; they are determined empirically by wind tunnel experi-

ments. Now using equation (2) and W = rng, equation (i) can be

written as

0 = CN/0 _+ nCN/_Z_'[_I Z

o

- T sin _ - rng cos_ + my, sin _ - mv cos
x y

We note that the result (3) is independent of the locations of

the center of gravity and center of pressure. Further, we note that

the term Iv I cannot be measured by the IMU, but it can be
w

approximated by IVi I' which can be obtained by integrating the

accelerometer readings with respect to time. If the inertial speed

is sufficiently large, then, as will be seen in the error analysis,

the error induced by this approximation will be small. Finally, we

note that the y-accelerometer will not read the inertial acceleration

unless it is biased by g. This difference will also mean that after

intregrating the accelerometer data, we must subtract a term

(z)

(3)

4



t

0_ g d T to obtain the inertial y-velocity. However, if we assume

that the y-accelerometer is continually biased to read inertial

acceleration, then (3) can be written as

0= _z CNI4 _ + CN!4z4 141 v2 + VX J - T sin

-mg cos _ + mv sin _ - mv cos
x y

._ 2where V 2_ v Z + v
W y X

(4)

(5)

Equation (4) represents the mathematical model used for

estimating the error in angle of attack from inertial measurements,

and a word should be said about its derivation. Our decision to work

with the normal force component was quite arbitrary. Although this

component is well suited to our purposes because of the simple

dependence of equation (3) on4, any component of aerodynamic force

(e.g., lift) could have been used with the sole restriction that it

should be nearly perpendicular to the thrust.

PEI<TUI_BATION ERROR ANALYSIS

To obtain the sensitivity coefficients of our linearized error

analysis, we denote (3) as an implicit function of 4,

(4,cN/_, A CN/ Z,p, S,T, g, Vw, _, _y,m,0= F

This equation defines _ implicitly as a function of the other para-

meters. If we differentiate (6), transpose F 6_, and divide by

- F, we have

(6)



s_- _. CNI<,
Of'

6C N/_+ FACN/a28(_CN/_ 2}

+ F 6 + F S 6S+ F T 6T+ F 6g + F V 6V w
P P g w

+ F. 6_ * F. 65 + F
v x v y rn
x y

Sin.+ FF 6_ +

I

(7)

The indicated partial derivatives are

2

PI Vwl S i

IACN/z ]
(8)

_'ONl<_ 2

_p ivwl z s
(9)

p }vwl 2

FACN/_2== I '_ I 2

S

(i0)

oi(' z cN/_+ A CN/=2 ] (ii)

FS = _. , N/_ =+ A (12)

F T = - sin (13)

6



F = - m COS
g

F- = m sin
Vx

F- = - "m cos [

vy

o

F = - g cos [ + v sin _ - v cos
m- x y

(14)

(15)

(16)

(17)

(18)

F_ = - T cos
(19)

mg sin [ + mv cos _ + my sin
x y

(Z0)

Some typical values for the parameters and the effects of

nominal errors in the parameters on the value of _ are recorded

in Table I. In choosing a value for the error in Vw, we have

reflected that we are using the inertial velocity to approximate the

velocity relation to the air mass, and hence that the error will be

on the order of the wind. If a priori estimates of the wind are

available the error used in the analysis should be the uncertainty

of this estimate.

7
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A PPENDIX

ASSUMPTIONS AND ESTIMATES FOR

DETERMINING ANGLE OF ATTACK UNCERTAINTY

1. INTRODUCTION

The values obtained for the perturbation of _ with perturbation

of parameters given in Table I are based upon information provided in

various references as follows:

Ref. l: "Am Introduction to Ballistic Missiles" Volume III,

AFBMD and Space Technology Laboratories, Inc.

(Revised 1 March 1960).

Ref. 2: "Preliminary Apollo Reference Trajectory";

(February 1964).

Ref. 3: The Earth as a Planet, Gerard P. Kuiper, Editor;

University of Chicago Press, 1954.

In some cases, realistic error estimates to be expected in

the parameters given in Table I have been obtained from these

references and previous Apollo Notes. In those cases where such

error estimates are not available as of this date, the induced perturba-

tions of _ are expressed as degrees per I_0 error in the parameter.

The following sections will describe the method or reference used in

obtaining nominal parameter values and error estimates.



2. NOMINAL VALUES AND ERROR ESTIMATES

FOR THE PARAMETERS

2. 1 CN/_ and ACN/_Z

and can be obtained from such
The values of CN/_ ACN/_r 2

sources as wind tunnel tests. As the parameter values peculiar to

the Apollo launch vehicle were not available, the nominal values used

for Table I were obtained from Figure 2-3, i_ef. 1.

2.2 p

A nominal value for p was obtained from page 500,

and no information on the error was available.

Ref. 3,

2.3 S

This value was taken as the cross-sectional area of the first

stage of the Apollo launch vehicle. When the aerodynamic coefficients

CN/_ and ACN/_2 are provided, a reference cross-section will also

be specified; and any errors in this value can probably be absorbed in

the coefficient errors.

2.4 T

The nominal value for T was obtained from Table 1,

No knowledge of the errors was available.

Ref. 2.

2.5 g

The nominal value was taken as the gravitational acceleration

at 23 miles altitude.

10



Z. 6 V

2.7

The nominal value of V
v_

was obtained from Figure l la, Ref. Z.

v and v
y x

The nominal values for these parameters were obtained from

the velocity and altitude curves of Figure 1 I, Ref.

contained information about the errors•

Z. Apollo Note 4Z

2.8 m

To obtain the nominal value of m, we used the figures given

in Section IV, Ref. Z, and assumed that the first stage fuel burned

at a constant rate during the first 150 seconds.

Z.9

From Figure 3-8, Ref. i, maximum _ appears to be about 2 ° ,

so this was taken as the nominal value.

z.i0

The nominal value of _ was obtained from Figure 1 i, Ref. 2.

Errors in _ were assumed to be only those due to drift of the inertial

platform, data on which is available in Apollo Note 42.

ii



3. TYPICAL CALCULATION OF PERTURBATIONS

INDUCED IN

3. i PERCENTAGE PERTURBATION iN MEASURABLE

If we are interested in the perturbation of _ with a 1% per-

turbation of the measurable, then the perturbation equation can be

written as

F F
_r 6q - _ i00 6q ) ( q

6_ = F F ( q-- 10-U-0-) .
q q

where

8F 8F
_-- = _ is the perturbation coefficient listed in
q

Table I. For a I% error in q, we set i00 6q _ 1 and get
q

F

q

6_ = (3.56 x 10 -6 deg/ib) ( 8.6 x 106 Ib
i00 ) = "306 deg.

3.2 ACTUAL PERTURBATION IN MEASURABLE

If we know the actual error to be expected in the measurable

q, then the perturbation equation

F

6_- F _ 6q
q

can be used as is." For example,
-4

7.00 x I0 tad in _ is

the error in _ due to an error of

6_ = (1.03x 103 deg/rad) (7.00 x 10 -4 rad) = .721 deg.

1Z



4. REQUIREMENTS FOR FURTHER ANALYSIS

In order to obtain accurate estimates of the angle of attack

error, accurate knowledge of the parameters is necessary. In

particular, nominal values during earth launch and error estimates

for the following quantities are required: aerodynamic coefficients,

CN/_ and ACN/_2 , and reference cross-section, S, for the Apollo

launch vehicle; atmospheric density, p, and _ravitational acceleration,

g, at relevant altitudes; thrust; inertial vector velocity and acceleration;

instantaneous vehicle mass; Gimbal angle _; and pitch angle _. Also

any a priori data on the winds encountered during launch would be

valuable.

13
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APOLLO NOTE NO. Z38

LEM SUPPORT: WORST-CASE

GYRO FAILURES

L. Horowitz

Z7 July 1964

INTRODUC TION

Apollo Note Z15 provides a computer study of MSFN moni-

toring of LEM during powered flight to determine the extent to which

increased (but constant)gyro drift rates can be detected. From this,

error contributions to estimated LEMvelocity are determined for

various gyro drift rates. This note uses these results together with the

results of Note Zll to determine worst-case errors in MSFN-estimated

L EM velocity induced by various worst-case non-constant gyro fail-

ures. Results are given in Table I.

% ,,r TT_ ,-t_ T "r._w.,_, _ _OD

The analysis is as given in Note 215, with the error study

conducted along the nominal LEM ascent trajectory. As before, gyro

failures are recognized by MSFN tracking with a detection probability

PD: "95 and false-alarm probabilities PFA: "01 and ° 1 (both of

which induce almost identical errors as shown in Note 215).

Note 215 plots detection probability PD vs. observation time

t for PFA = " 01, . i. These results are then cross-plotted against

the velocity error curves of Note 211 to show the error in velocity

at time of detection of gyro failure as a function of time from lift-off,

with time of error inception plotted parametrically. These curves

as given for pitch, roll and yaw gyro failure of i00 meru and i000

meru, with x, y, £errors separately indicated. In all cases, the

velocity errors at detection are virtually the same for PFA: " 1 or



• 01 (PI) remains approximately constant at . 95). The velocity errors
due to increased (but constant)gyro rates are plotted over the "normal"

velocity error induced through nominal i0 meru drift of each gyro.

P_ecognition is then accomplished at the point of intersection of the

increased gyro-rate velocity error curves with the detection threshold

curves (P_= o 95) indicated by broken lines for the two false-alarm

probabilities in question.

Now to extend these results to the case of non-constant gyro

drifts, we consider arbitrary oscillations of the gyro rate failures

for failure amplitudes of i00 and i000 meru. For this situation, we

observe two contingencies:

I. Period of oscillation less than time required for

detection. In this case, induced velocity error is

less than that of the constant drift rate error just

before detection (of same amplitude, of course)

since the direction of increasing velocity error

reverses with direction of gyro drift.

Zo Period of oscillation greater than time required

for detection: In this case, detection is accomplished

before direction reversal so that compensation for

error beyond time of detection provides positive

error reduction in estimated velocity.

Hence, the worst situation corresponds to the case in which

the gyro error reverses just after detection so that the induced error

is approximately doubled due to compensation in the wrong direction.

l_esults collected in Table 1 reflect these worst cases by

obtaining from Note 215 the worst-case detection times for each error

rate and for each estimated velocity component. The corresponding

worst case errors at time of detection are then read from the curves

of Note ZII and the errors doubled to reflect the "direction" reversal

Z



(this assumes velocity errors to be directly proportional to applied

thrust for fixed detection t zmes - this is approximately true over

relatively short intervals). _Asbefore, pitch gyro failures are readily

apparent; roll and yaw gyro failures are considerably less so. In

every case however, we note that the broken line detection threshold

curves of Note 215 indicate worst-case upper bounds on velocity

estimation errors induced by worst-case gyro failures (without

accounting for error compensation as explained above - doubling the

ordinates makes this provision).



Table i.

Worst-Case Velocity Errors Produced by Worst-Case

Gyro Failures

Pitch Gyro

i00 meru

gyro drift

rate
x error

error

1000 merugyro drift
rate

error

error

Roll Gyro

I100 meru (
gyro drift

rate

i000 meru (
gyro drift z

rate

error

error

Yaw Gyro

I

i000 meru (
gyro drift

rate

error

Maximum Time

Interval Between

Start of Gyro
Failure and

Detection, sec.

4O

40

20

20

160

70

ii0

Maximum Velocity
Error at Time

Corresponding to

PD = " 95, meters/sec.

PFA = " 0 1

1.2

3.0

20.0

Note: Virtually same results for PFA = " 1
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APOLLO NOTE NO. 239 J. Holdsworth

28 July 1964

BASIC EQUA TIONS A ND COMPU TA TIONA L RA TIONA LE

FOR OPTIMUM MULTIPLE CORRECTIVE

BOOST PROBLEM

INTRODUCTION

The purpose of this note is to derive the basic equations and

describe the computational rationale behind the multiple corrective

boost problem. The word optimum is somewhat misleading and re-

quires some clarification. The particular optimization problem which

we shall consider is that of minimizing the terminal mean square

position miss subject to some constraint which must be satisfied by

the amount of available fuel - or inversely the minimization of the

expected fuel consumption subject to the condition that the terminal

mean square position error is permissibly small, In all cases we

shall assume a fixed guidance rule - namely, to boost in such a manner

as to reduce the predicted position miss to zero. Thus subject to this

navigation philosophy our optimization problem involves choosing the

best times to boost for a fixed number of boosts.

In point of fact it may be shown that if the execution errors

are accurately known that one can do better both in terms of fuel and

terminal mean square position miss by not boosting as to null the

predicted miss. However, for small execution errors the improvement

is negligible and in the limit of vanishing execution error the optimal

boost approaches that of hulling the predicted miss. This point has

been made for an extremely simple case in an earlier Apollo note.

A more realistic treatment comparing actual losses will be the sub-

ject of a future note but will not be considered at present.



The results obtained in this note actually represent the collec-

tive product of the efforts of several people - e. g., Dale, Engel, Horowitz,
Lustick and myself. However, responsibility for any errors and/or

inaccuracies which may inadvertently have crept into the present note

is mine.

We shall assume that we have available a reference trajectory

and that our deviation from the reference trajectory may be charac-

terized by a 6 dimensional state vector whose first 3 components are

position components with the last 3 components being those of velocity.

We shall further assume that the deviation vector is sufficiently small

so that its behavior in time may be described by operating upon it by

a time dependent transition matrix Q which is actually determined by

the known reference trajectory. If the state vector were evaluated

along the r_f_r_nc_ trajectory it would be ide_tically _o,

We shall assume th&t we are interested in certain conditions

being met by the state vector at some known final time tf. Further-

more, we shall assume that a fixed number N of impulsive boosts are

to be employed at times t i= i, 2, -,. N where tO <t I < -- <t N<tf,
i s

where to de_ote_ =,the initial time at which we begin tracking.

DERIVATION OF THE TERMINAL ERROR MATRIX

O

As the equations to be developed are a bit cumbersome and

require a considerable amount of descriptive notation, it will be con-

venient for us to list below the most commonly used notational symbols

together with their definitions. Those concepts which may not be self

evident will acquire meaning at a later point in our treatment. They

are nonetheless listed below in order to provide an accessible unified

reference thus allowing the reader to easily identify a particular

symbol without having to search through the entire text.

2



Notational Conventions

s (i)

P (i)

v (i)

sf (i)

Pf (i)

vf (i)

A

Pf (i)

^

vf (i)

A

6vf (i)
A

P (i)

A

6P (i)

A

v (i)

The 6 x i state vector just prior to the performance

of the i th corrective boost.

The 3 x I position vector just prior to the perfor-

mance of the i th boost. The components of P (i)

are the first 3 components of S (i).

The 3 x I velocity vector just prior to the perfor-

mance of the i th boost. The components of V (i)

are the last 3 components of the state vector S (i).

The final value of the state vector after the i-th

boost has been performed. More properly Sf (i)

is the value which the state vector S would have

at time tf if the i th corrective boost were the last

to be performed.

The final value of the 3x 1 position miss vector if

the i th boost were the last - i.e., the components

of Pf (i) are the first 3 components of Sf (i).

The final value of the 3 x 1 velocity miss vector

if the i th boost were the last - i.e., the last 3

components of Sf (i).

Estimated final position miss after the i thboost

based only upon data obtained during the time in-
terval t. to

i ti+ i"

^

Error in the estimated final miss Pf (i).

Estimated final velocity miss after i th boost com-

puted from data obtained from t. toi ti+ i"

^

Error in the above estimator Vf (i).

Estimated position vector just prior to making i th

boost - obtained from tracking from ti_l to t..
i

a

Random error vector in the estimate P (i) above.

Estimated velocity vector just prior to making i th

boost - based on data obtained during ti_l to t..1

3



6v (i)

(i) =

AV (i) =

(i) =

_V (i) =
C

E =

Superscript T =

diag ( A ) =

cov ( ) =

Random error vector in the estimate V (i).

6 x 6 time dependent transition matrix which

operates upon the state vector thus determining

its behavior in time. 04 _,%(,_ are the 3 x 3

partitioned submatrices.

rna_ _.._ s3 x 3 diagnal +_-_ whose diagonal elements

6 x(i), s y(i), s z(i) are zero mean independently

distributed dimensionless random variables with

constant variance o-2.
e

The 3 x 3 identity matrix.

The actual instantaneous impulsive 3 x 1 vector

boost applied at time t..
l

The impulsive change in the st_t_ vector at time

t dme to the boost AV (i}.
I

The commanded impulsive boost at time t..
1

The expected value operator or integration of the

quantity in question with respect to the joint

distribution function of all of its random arguments.

The matrix transposition operation.

The diagonal matrix whose diagonal elements are

the same as those of A where A is an arbitrary

square matrix.

The covariance matrix of the argument in question.

4



To briefly summarize our calculations, we assume that a

fixed number N of corrective boosts are going to be made at times

tl, ''' tNwhere tO.=tl<tN_-£f and that each boost is such that if

there were no execution error, the predicted final miss would be

reduced to zero. We assume that the prediction or estimation

procedure is memoryless in that the only data employed in computing

15 (i), V (i) is that obtained in the time interval t. to t. In other
I-I I"

words we do not store data for estimation purposes for time periods

exceeding "inter boost" intervals. Now because of random errors in

the tracking data there will be random errors in our predicted posi-

tion miss vector which will cause us to command incorrect boost

corrections. In addition, there are random execution errors to

contend with.

Our first and pri_a_y task will be to calculate the effects of

these random uncertainties by computing the mean square position

miss distance after N corrective boosts have been performed. Actually

we shall be somewhat more general and will calculate the 6 dimensional

position and velocity miss matrix which will display the mean square

position and velocity misses together with the correlation between their

components. We shall also describe the computation of the average

amount of fuel expended and will discuss some of the difficulties

associated with specifying a confidence level for the maximum amount

of fuel consumed. We shall then indicate how various optimizations

may be performed by utilizing the results of the aforementioned

calculations.

As mentioned before we assume that the system is such that

the time history of the state deviation vector S may be developed by

operating upon it with a 6 x 6 transition matrix Q which is itself a

function of time. More precisely, if ta and tb are any two time

instants not separated by a boost then S (%) is obtained from S (ta)

by:

5



o(tat )s(ta)
In most of our following work the time arguments of the

matrices will be ti, tf with tf fixed so that instead of writing

Q (ti, tf) we shall for brevity suppress the tf and merely write

Qi" Occasionally when there is no ambiguity we shall even suppress

the i. The same remarks apply to the partitioned submatrices

_, _, _,_.

Ira:mediately before the last or N-th boost, the value of the

state vector is S (N). Immediately after the instantaneous boost,

the value is S (N) + _S(N) , which allows us to write the following

expressions for the final value Sf(N).

Sf (N) = QN (S (N)+ AS(N))

(I)

(z)

= QN S (N) + QNAS (N) (3)

= Sf[N.-.I ] + QNAS (N) (4)

However, since

(o )AS (N) = A V(N)
(5)

we may evidently write the following expression

I N v,N,/
Vf (N)] Vf (N- i) CN A V (N)

(6)



The quantity we shall compute is:

E [Sf(N) Sf(N)T 1
L J I T]

Pf(N) Pf(N)

E [ Vf(N) Vf(N) T

(7)

Before launching into this computation some further manipulations

will be instructive.

From (6) we see that if we wish to boost to null our pre-

dicted position miss that our commanded boost should be:

-I ^

AVc(N) = " _N Pf(N-l) (7)

, }" [ i_f= " _N 1 Pf (N-I)+ 6 (N-I) (8)

Now the boost which is actually performed, i. e., AV(N),

differs from the commanded boost because of random execution

errors. The nature of these random errors is assumed to be such

that they effect each component of AVc(N) in a distributionally

identical but independent manner so that among other things the

magnitude of the boost error is proportioned to the magnitude of

the commanded boost, Thus recalling our definition of the random

diagonal matrix • (N) we may write the following expression for

the corrective boost which was actually executed:

ov,N,: ii+ . (9)

7



which from (8) may be written:

( -)(AV (N) - - 13N-I + e (N) t3N 1 Pf(N-1) . )+ 5 Pf(N- l} (10)

Substitution of equation (10) into equation (6) allows us to

write the following relationship:

Pf(N))
Vf(N)

"_ ___(__"(_+_"__)__(_-*_1J (Ii)

Equation (i 1), in spite of its grotesque appearance, exhibits the

random quantities in a manner which lends itself to the easy

computation of equation (7).

Actually the calculation of the final error matrix for

one corrective boost is the key to our problem. As we shall see,

once we have certain functional forms yielded by this calculation,

we may write a simple iterative expression which will permit us

to calculate the desired matrix for an arbitrary number of boosts.

With this thought in mind, and since the computations are somevShat

lengthy we shall only discuss the calculation of E[ Sf(1)Sf(1)TJ

F "1

in detail.

The first item of interest is the submatrix E [ Pf (i)

From equation (Ii) we seethat for N= I we may write:

8



P f(I) Pf(I)
T _ T (__I)TT_T_.¢_ 1 Pf(0) Pf(0) .e

(12)

In equation (12) Pf(O) is the final position miss which would be

incurred if no corrective boosts had been performed. Pf(0) is

not random and is explicitly given as a function of the initial

value of the state vector S(0), by the following equation.

,I01:o(_0_,)_c0_+_(_0_,ivc01 (13)

The random quantities in equation (12) are the random

matrix 9 and the random error vector 6i5f(0) which are indepen-

A

dentiy distributed and have zero mean or expected values where
^

we mean, of course, that E6Pf(0) is the 3 x 1 zero matrix and that Ee

is the 3 x 3 zero matrix. Since E is a linear operator, then

_[_I__ _f__I_"_°"_=o__oo_e_o_v_uo.ofo_ o_
the 4 terms on the right hand side of equation (12). Moreover,

for independent random quantities, be they scalar or matrix valued,

the expected value of a product equals the product of the expectations.

This implies that when the expected value of equation (12) is taken

the two middle terms will vanish allowing us to write:



E I Pf(1) Pf(1) T]

+ E

T I)T 1E e _ I pf (0) Pf(0) (_- e _T
J

(14)

I+_ e _ I] 6 Pf(0) 6Pf(0) (I÷ _" ,

where in writing (14) we have used the fact that since e is a diagonal
T

matrix then e equals e.

For convenience we shall consider the two terms on the right-

hand side separately. Using well known properties of expectations

of matrix products, it follows that since _ is non random we may

write the first term as:

Pf(0) Pf( (_ ep =

E e (_- Pf(0) Pf(0) [_"

(15)

Now the quantity (_-i Pf(0) pf(0)T (_-l) T ) appearing in

equation (15) is a 3 x 3 matrix which is both pre and post multiplied

by the random diagonal matrix _. Let us temporarily denote

(_-l Pf(0) Pf(0)Ti(_'l) T) by _. Then in the triple matrix product e_e

each off diagonal term will have a multiplicative factor equal to

either e • , e e or e e . Hence, when the expected value
x y x z y z

is taken, all of the off diagonal terms will vanish identically since

and e are independent with zero means.
e x , ey z

On the other hand, the first second and third diagonal terms
2 2 2

of e_e will have multiplicative factors of e e and e
X ' y Z

respectively. Now since e is a diagonal matrix it follows, and
2

since ex, ey, e are identically distributed with variance o-z e

we may write:

10



E
[ e_ e i = 0-2 diag (_)e

(16)

Z
or since o-

e
is a scalar equation (15) may be written:

E
I pf(0)T T _T}i _ e_- Pf(0) (_-i) e =

2 ( 1 pf(0)T (_-1 T)
o- _ diag _-e pf(o) )

T
(17)

Next we compute the second quantity on the right-hand side

of equation (14). Expanding the second term and again using the

fact that the expected value of the product of independent zero mean

quantities vanishes we have:

+ -1)   f(ol

(18)

(6 f(o)where in (18) , by Cov ) we mean the covariance matrix of the
A

components of the random vector 6Pf(0).

To evaluate the second term in equation (18), we let _ ( 6, e)
A

denote the joint distribution function of the random matrices 6Pf(0)

and e, and F (6) and G (e) their marginal distribution functions. Then

by definition of the expected value operator:

ll



(010 , 0 0 ,,o,Tl T).I

-e

1 ^ ^ T
Pf(0) 6Pf(0) dF(6) (_- e dG(e)

covl6_f_0_lf_-llT)e dG (e)

g
= o- diag

e _-1 coy

(19)

where the successive steps in (19) follow from the independence

of the e and 6_f(0) distributions and from obvious properties of

integrals.

Finally, substituting (19) into (18) and (17), (18) and (19)

into (14), we have:

E
Pf( p, 1 T1

e _ diag p coy 6Pf(0) j.I_-i _ + cov 6Pf(0)

(z0)

Combining the first two terms in (20), the above expression

reduces to:

IZ



E L[Pf(1) Pf(1) T] = °-2e diag [_-

=ov

1(Pf(0)
13T

(Zl)

° :

The computation of the remaining submatrices

lines and since the details are lengthy but not instructive we forego

the derivations and content ourselves with merely writing down the

final results in the following equations,

E [Pf(1) Vf(1)T I =

COY

(22)

(23)

13



We note parenthetically that the expression given in equation (23)

is a symmetric matrix as ifmust be while the expression for

E [Pf(1) Vf(1)T l is not symmetric.

Having calculated equations (21) through (23) we may obtain

the complete 6 x 6 terminal error matrix for 1 boost by direct

substitution into equation (7) to yield:

E [Sf(1)Sf(1) T ] (24)

As mentioned before this matrix contains complete information

about both terminal position and velocity errors together with their

correlation. Its advantage is that it immediately exhibits the

deleterious effects, if any, on the terminal velocity which we

incur by only controlling the final position. Furthermore,

_[ sf(ll sf(,l T ] is a functionof the initial final miss Sf(01and
L J

2
the execution error variance o- and implicitly the observation noise

variance through the appearance of coy (6pf(0)

The mean square final position and velocity misses are

obtained immediately from equations (21) and (23) by:

jE I Pf(1)] 2. = tr E[ Pf(1) Pf(1) T (Z5)

and

El Vf(1)l z = tr E[ Vf(1) Vf(1)T I (Z6)

14



where tr denotes the trace operation applied to the indicated

matrices.

Finally, before we discuss the extension of these results

to an arbitrary number of boosts, it will be helpful to say a word

about coy (0) and how it is obtained from more familiar

qua ntiti e s.

Now from many earlier Apollo notes the 6 x 6 covariance

matrix coy 6S(1) of prediction errors just prior to the first boost

based upon data obtained in the interval to tO

clearly write this known quantity as:

^

Coy 6S(1) =

/

E

tI is known. We may

[6P(1) 6P(1) T] E [6P(1) 6_(i) T]

(ZT)

Pre-multiply equation (Z7) by Q (tI , tf) and post multiply by

Q(t i , tf)T to obtain:

Coy 6Sf(0)= Q(tl, tf)Coy 6S(I) Q(tl, tf)T (Z8)

X

_If T yIfT'!

T_ Ti

P'if q'if

(Z9)

15



Multiplying (Z9) out explicitly we obtain:

Coy 6Sf(O) =

^ F ^
_.[_(_,_v(__]+_L_V(!_6_(1)T"

[o ' ] [o ' ]P(1) 6V(I) T + _ifE V(1) 6V(1) T-Y1fE ^
/

or finally:

x I elfT _(ifT I

(30)

A

Coy 6Sf(0) :
I ^

Coy 6Pf{0)

_,_ov{_(o__(olT),_

Coy(6pf(o)6vf(o))

^

Coy 6Vf(0)

(31)

where specifically.:

A

Cov 6Pf(0)=

+

elf + plfE P(I)5_(I) elf

[ ^ ^ ]{$1fT [ ^ ^ ] TelfE 6P(I) 6V(1)T + _ifE 6V(1) 6V(1)T _if

(3Z)

16



Coy
6_f(o)T)

÷ _IfE[ 5_(1)6V(_)T]"ifT

+ _IfE [6P(1)6_(i) T] _if T

+ _ifE _V(1)6_(i elf

(33)

Cov

+

^ ^ ] TYlfE 6P(1) 6P(1) T yl f

^ TIT T¢IfE 6P(1) 6V(1) Ylf

+ YlfE 6P(1) 6V(1) T elf

[ ^ _ ] T+ ¢IfE _V(1)6V(1)T elf

(34)

Everything on the right-hand sides of equations (32), (33)

and (34) are known from earlier considerations. It is perhaps well
A

to remark that Cov 6Pf(0) refers to prediction errors in estimates

made at time tI not to . This is a result of our convention that

Pf(k) referred to final conditions after the kth boost where as

PCk) referred to current conditions immediately preceding the kth

boost. The convention is unambiguous and saves the introduction

of additional notation to discriminate between pre and post boost

conditions of the same instant of time.

17



Finally, we conclude this section of the note by showing how

to extend equations (Zl) through (34j to obtain comparable expressions

for an arbitrary number of corrective boosts N.

To do this we note that if we post multiply equation (11) by

its transpose and utilize our assumption that the random matrices

6Pf(k) and G (k) are mutually independent and not self correlated in

time that we have the following expressions for an arbitrary positive

integer k.

+ coy0_ck-l_)_-I_T1_T_covI0_f_k-l_i
(35)

E[ Pf(k)Vf(k)T 1

+

[dia 101 PfCk (36)

and:

_- [Vf(k) Vf(k)T] = E IVf(k-l) Vf(k-l)T ]
(37)

T

_bT

18



Now since pf(0), Vf(0) are known then equations (35) through
(37) may be directly evaluated for k = I, 2, " • • N for any desired
number of corrective boosts and the final desired terminal miss

matrices obtained by direct substitution into equation (7). In equations

(35) through (37) the _ and _ matrices are understood to be evaluated

as _ (tk, tf) and_ (tk, tf) respectively, where w_ n_ve assumed the

time arguments to be implicitly understood in order to avoid further

complication of the notation.

Although the equations are somewhat forbidding notationally

the procedure is well defined and straight forward. Moreover, the

computations are nicely implementable on a digital computer.

CALCULATION OF THE TOTAL CORRECTIVE

BOOST AND ITS DISTRIBUTION

We shall assume, that between boosts the vehicle is on a

free fall unpowered trajectory so that the only time that fuel is ex-

pended is in the performance of the impulsive corrective boosts.

The total corrective boost F S is the sum of the individual corrective

boosts.

N

z S = _ lay (i)i
i= 1

(3s)

N[ ]ii.= _ Av(i) T Av(i)
i=l

(39)

19



From equation (I0) we recall that

Moreover, from equation (1 1) we note that

Pf(i) = - _ie(i)_i'l Pf(i-l)-(l + _ie(i)_i "I) 6Pf(i-l) (41)

Equations (40) and (41) are valid for i --_ I •

Specification of N and the time instants to , .... tN, tf

together with P(0), V(0) and certain distributional assumptions
^

about the _(i) and 6Pf (i) matrices, in principle, determine the

probability distribution of the total corrective boost required.

Hence, theoretically w e may determine for a given set of initial

conditions various percentage points for the distribution of total correc-

tive boost. Thatis, we may determine numbers like F
•99' F. 95' F. 90

such that the probability that no more than F. 99 meters/sec of boost

will be required is .99, etc. This would allow us for a given

confidence level, i. e. , a fixed F. 99 and a given set of initial con-

ditions to determine by trial and error the sequence of boosting

times which minimized the mean square error.

Unfortunately, however, the breach between principle and

practice is rather wide at this point. The distribution of F S is very

difficult to determine analytically. Inspection of equations (38)

through (41) reveals that the random variable F S is the sum of

several quantities each of which has a rather complicated distribution

itself. Also, the successive terms in equation (39) are neither

identically nor independently distributed, which precludes the possi-

bility of computing the distribution of F S as a simple N-fold convolu-

tion of the distribution function of the [_V (k) I if they were conve-

niently tractable analytically,which they are not.

Z0



Furthermore, since the number of boosts N is likely to be

a rather small positive integer, the asymmetric nature of the dis-

tributions of the AV(k) terms, together with their mutual dependence,

inclines one to despair of hoping to fruitfully or correctly invoke any

form of the central limit theorem and approximate the distribution of

F by a normal distribution.

Admittedly the computation of the distribution of the fuel is

still an open problem and requires additional work. One possible

method of solution would be to generate the distributions of the total cor-

rective boost empirically using Monte Carlo techniques. This cer-

tainly is possible since the distributional knowledge of G (i) , 6Pf(i)

together with equations (39) through (41) would permit us to construct

a sequential sampling process which would with probability one

empirically determine the distribution of total corrective boost after a

sufficient number of computer runs. How expensive this would be

in terms of the machine time required to generate all of the distri-

butions we would need to perform our optimizations is not currently

known. This, however, will be the subject of a future Apollo note.

There is another possible approach which might allow the use

of known, tabulated distributions. That is to exploit the tendency that

the distributions of sums of positive, continuously distributed random

variables quite often have of being approximately distributed as a

non-central chi square variate after multiplication by a suitable norma-

lizing scale factor. The equivalent number of degrees of freedom of

the approximating non-central chi square distribution is given by 2 dividedby

the square of the coefficient of variation of the total corrective boost distri-

bution. The non-centrality parameter might be obtained by subtracting

this equivalent number of degrees of freedom from the expected value

of the normalized F S where the normalization factor is the arithmetic

average of the standard deviations of the A(k) . If this approximation

were valid, then first and second moment information about F S would



allow the approximate computation of the appropriate percentage

points from well tabulated distributions. This line of approach might

also warrant more study.

Still another possible approach would be to expand the distri-

bution function of the total corrective boost as an infinite series such

as the Edgeworth expansion or the Gram - Charlier expansion. The

coefficients of the successive terms in expansions of this type are

functions of progressively higher order moments of the total corrective

boost distribution. While these moments may be obtained, their cal-

culation is quite messy and involves other infinite series expansions.

Moreover, since the rate of convergence of expansions of this sort

roughly depends upon how nearly normal the distribution to be approxi-

mated i_, it may well be that the labor required tO _Qm}_u_e a sufficient

number of terms is prohibitive.

We shall terminate this section by performing a much more

modest computation, which although it is no where near as useful as

knowing the F S distribution - will nonetheless permit us to set upper

bounds to the probability that we will prematurely expend our available

boost. Equivalently we shall be able to compute lower bounds to the

confidence level with which we may expect not to exceed a given amount

of boost for our boost program.

The unfortunate thing is that these confidence levels, or more

properly, these approximate lower bound confidence levels, while easy

to compute suffer from the disadvantage that they will often paint far

too grim a picture.

We now derive the expression for our approximate confidence

bound. Let G(Fs) be the distribution function of the expended boost.

Let L be any positive number. Then:
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<
L

(4Z)

Proof: Let _ denote the entire sample space of possible

values of F S, and let A denote that subset of f2 on which F S> L.

Then by definition, the expected value of F S is:

(43)

or:

+
A n-A

(44)

> L]dG = L Prob F S_> LI

A

(45)

nature of F S ,

In the above equations (44) follows from (43) by definition

of the set A while (45) follows from (44) because of the non-negative

Dividing both sides of (45) by L, we have:

Prob Fs>l L! <_ ,
j/ 'i_

(46)

which is what we wished to prove.
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Since>O may

 [FS] (47)

where k is some positive dimensionless constant. Substituting

equation (47) into equation (46) we obtain the following more con-

venient form of the inequality:

( Ij)Prob F S ___ k E F S _ -_- (48)

Expressed verbally, equation (48) states that the probability that

the actual amount of boost used exceeds k times the expected value of

the corrective boost never exceeds i/k. Alternatively, we may

interpret (48)as saying that ifwe have k E ,IFS I meters/sec

?-

of boost available, then the probability that weL will_ not be able to

complete our boost program is less than or equal to i/k.

Now equation (48) is a perfectly correct statement and the

interpretations we have just given are valid. The trouble is that it

is an inequality which for a given k and E gives an upper bound

on the probability of running out of boost, rather than an exact statement

of that probability. Many times the bound given by equation (48) is

excessively pessimistic and intimates that the probability of running

out of boost is much higher than it actually is.

Equation (48) may be put to yet another use as follows. We

may specify in advance that we wish to be at least 90% sure of having

enough boost evailable - or equivalently we specify in advance that

the probability of running out of boost must be less than 10%.

24



From equation (48) this means choosing k = 10. Then
F 7

I0 E
[Fs] is certainly enough fuel to guarantee that the probability

of running out is no greater than I/i0. However, we must be careful
r

to guarantee
L J

completion of the boost program with 90% confidence. I0 bJ

clearly enough, but because of the conservative nature of the estimate

given by equation (48), it could well be that if we knew the exact

distribution of F_S that we would find that a much smaller available boost

boostthan i0 E FS would allow us to complete our mission with 90%

probability. - -

On the other hand, there is comfort in the thought that if

i0 E[Fs ] turns out to be a much smaller amountof boost than we

actually have on hand, then with a very high probability we will have

sufficient for our boost progr_tm,

At any rate we shall terminate the present discussion of the total

corrective boost distribution by computing the average boost required, or more

, I ' directlyproperlyanapproximationto_JFS fromequatmons(38,
through (41). This computation will allow us to make the weak confi-

dence statements we have just been discussing and will at the same

time point upthe difficulties One encounters in attempting to explicitly

compute or approximate the moments of the fuel distribution.

To compute the expected amount of expended fuel we note from

equation (38) that:

N

k=-i

(49)

N

I E[
k-=-i

(50)
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Now it is much easier to perform the expectation calculations on

terms involving integral powers of AV(k) T AV (k) than _AV(k) I •

To do this we consider the following expansion.

Let z denote IAV(k) 12 for brevity, and let f(z) be any

function of z that may be developed in a Taylor series expansion .

about the point _ = E(z). Then we may write:

t 1 1,

f(z) = f(_) + f (_)(z-_) + _ f (_) (z-p)- + ..... (51)

Now to obtain the expected value of the function f (z) we integrate

both sides of (51) term by termwith respect to the distribution of

z to obtain:

1 II

El(z) = f(_) + _ f (_) E(z-_) z + ..... (SZ)

In our particular case

(53)

so that (SZ) becomes:

z ik) l--

+

(54)
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In equation (54) we see that we are only concerned with the

computation of expectations of integral powers of I AV (k) 12 . The

series expansion may be extended as far as necessary to attain the

required accuracy. All such expectations are computable in a

straightforward manner although they are a bit lengthy.

We shall only compute the first term in this series for

illustrative purposes. Since the series is alternating the first term is

probably the dominant one. IkF_oreove_, the first term may well beanover

estimate or upper bound to E IAV (k) ] , and as suc h will allow us

to easily calculate an upper bound to the average amount of corrective

boost required. The truncation error will not exceed the magnitude of

the first neglected term, so that calculation of one extra term provides

a conservative error bound. That is - our order of approximation

is:

(55)

From equation (40), we may write the following equation

for k=l .

AV(1) T AV(1) = + 5Pf(0) _ I + 2G + e _-i f(0) + 6Pf(0)^ (56)
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or: C _I_T(i+2_+2) lAV(1) T AV(1) = Pf (0)T Pl ;' i _- Pf(0)

+ 85f(0_T(p-iIT(:j+ Z_+ _21j_-iPflO>

(57)

Now taking the expected value of both sides of (57) and using the
A

fact that the matrices 6Pf(0) and G (i) are independent with zero

means we obtain after some simple manipulations the following

expr e s sion:

+_o__,i0_)(_ (58)

Invoking the approximation in (55) we have approximately:

1 (Pf(0) Pf(0) T +

i/z
(59)

Now, using familiar arguments but sparing the reader the

details we remark that for k>l the counterpart of equation (59)

may be written:

l) Pf(k-1) T] +_ov_0_)[__)

(60)

T] I I/Z
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Thus finally substituting equations (59) and (60) into equation

(50) we obtain the following approximation or more precisely upper

bound to the expected amount of corrective boost required.

N [tr[ _
(61)

Equation (61) is defined entirely in terms of quantities which are known

In particular the term E[P (k-l)P (k-l) T]at this stage of the game. f f

appearing in equation (61) are obtained directly from equation (36).

If the accuracy of the approximation given above is inadequate then

the next higher order terms may be computed without too much

difficulty.

Actually, the computation of the variance of F S is not too

formidable and as its knowledge permits us too make tighter statements

about confidence levels it will be calculated in a zelated note which will

appear shortly. However, neither its computation nor higher order
1"'I

corrections to EII_'sI will be discussed here. Their determination
L u

requires the use of the multivariate moment generating functions of
^

the estimater vectors 6Pf(k). While these methods are fairly direct

their description would require an excessive amount of space in this

already over lengthy note.

OPTIMIZATION PROCEDURE

Now we have the means for determining the optimum boost

program according to the selected guidance rule, and for determining

the corresponding boost cost.

Z9



For a single boost we determine the boost cost and the r. m. s.

miss for this boost occurring at different times in the flight, as sketched

in Figure la.

For two boosts, one at time tI and one at a later time t2, we

determine the boost cost and the r. m. s. miss for all combinations of

tI and tz, to find the optimum. See Figure lb.

For each t2 in the above, we select the value of tI (from the

graphs) which minimizes the total boost cost, as indicated in Figure ic.

Then using these values of t2 and tI, and the values of t3 greater than

t2 we find the total boost cost and the miss for three boosts, as shown

in Figure id should represent the minimum boost cost for three boosts.

We will check this by perturbing the boost times.

The case in which the errors in estimates of miss are corre-

lated at the v_riou_ boost ti_es will be di_cu_ecl £n _ _ublequent

Apollo Note if it should prove necessary.
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APPENDIX H. Engel

INVERSION OF

In the preceding analysis we have blithely assumed that the

matrix _ was non-singular. Since the quantity _,l figures rather pro-

minently in many of our equations we present here a brief justification

for our assumption of the non-singularity of _. Using a notation

slightly different from that of the main body of the note,

Qt 1 = Q- 1, t = Qo, t Qo, t 1 Qt, o tl, o

_ where _ = : -

Qt, o = OiXo' Yo' %)

X I yl

that

We may select a particular coordinate system; namely, the

z' system, employed in Apollo Note No. 82 and following, so

!

8x' 8x

8 a 4 8 a 5

0

0 0 1

3Z



[3 has an inverse if its determinant is not zerO.

8x _ _ - -----

det[5 = 8a4 8a 5 8a 5 8a4

I_ O%@-eo) o ---
, _ + cos Oa4 j

= Y Oa 4

I 8(o -o o]Oa 4

= :r

+ sinO

:o_, o _Oo_Oa 5

---IOa.4

sLn @ + x' cos @I

_.__ _ 8a 5
Oa 4 Oa5

+ s_n 0

(O-O o) + cosO

Oa 5

o (o- o o1 --.--

8a S
8a 5

° (°-°o" ]
oa 4 l

I

_a 5

Or

8a 5

8(0 -e o1 1
Oa 4

_0_,

j= z_,



The remaining partials depend only on al, a 2 and a5, so in

general det _ is a non-zero function of time. For t close to zero,

det _ goes to zero linearly with t.

det _ = r (i- 8H 1 8e (M_Mo) 8E + sin_ l-ecos +

(l-e cos_) 2 8a 4 l+e 8 8a 5 l-e 2 8a 5

+ (cos g-l)(l-e cos6)

l-e
(2o<cos_+_>)io°_oI]

i c )2 8H _ __!_l 8e (M_Mo) 8___EE+ sin£1-ecos +l 8e

H 8a 5 l+e 8a 4 i- z 8a 5

+ ( _)(o_Mol](co__5-l)(l_el-ecos6 ) Z -e_'cosS,.+ -_-41j
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APOLLO NOTE NO. 240 H. Engel

Z9 July 1964

DETERMINATION OF

POSITI ON AND VELOCI TY IN

POWERED FLIGHT BY COMBINED MEASUREMENTS

I ntroduction

In this Apollo Note we show how the position, velocity and

orientation of the LEM can be determined in powered flight from

Doppler radar measurements and telemetered data from the on-board

navigation system. We show that a modified Kalman-Schmidt method

has sufficient accuracy for this purpose, and that the computations

can be performed with sufficient speed. This note does not consider

the accuracy with which the computations can be performed; i. e.,

the accumulation of round-off errors has not been analyzed.

Kalman-Schmidt Error Analysis

From Apollo Notes Nos. 177, 185 and 192, we have:

T T -I
= + (M P M + Qn ) (Ynm " Ync )6X n 6 Xn, P (MnPn) n n n

Un = Pn + (Mn Pn )T (Mn Pn MTn + Qn )-1 (Mn Pn )

= 6X + _n a + _n gn6 Xn+l, P 6n+l, n n n

Pn+l 6n+l,nUn 6T + _n Rn T= n+l,n _n + higher order terms

in which



Ynn'l
is the measured values of the measurables at time t

n

Ync
is the computed values of the measurables at time t

n

6n+l, n =
from Note No. 193

_n
,from Note No• 195, is a matrix operating on

the thrust component of acceleration, a
n

_n = _ is a matrix operating on the gravity component

of acceleration•

It has already been shown that the errors in position and velocity

due to an incorrect gravitational acceleration, which in turn results

from an error in position, is negligible• As a consequence, this is not

considered in computing Pn+l"

In order to show that this method has sufficient accuracy we

must show that the values of M n can be obtained with sufficient accuracy.

Now, in the Kalman-Schmidt method, M n is 8y/Sx evaluated on the

reference trajectory. In this application, however, there is no fixed

reference trajectory. On the other hand, M can be evaluated on the
n

basis of a trajectory determined from Doppler radar data alone accord-

ing to Apollo Note No. 198• We must show, however, that the value

of M n obtained in this fashion is sufficiently accurate. We do this by

obtaining a series expansion for M
n

are 8_/ 8x. and 8_/8_. We may writeThe elements of M n i l"



0h
0X.

I

3

+z
\ i Jref j=l ox.oxj/i ref

/_x '(
j=l

a2_ 1 _÷.
_._,J J ..

1 J/tel

and

0I_ [ "_ 3 (.02R)-- = + _ o_. ok. 3
°xi \°xi /_ef J:l ' J'ref

3

Io2_ ! -x-+--.
j= 1 r ef

We shall find
OZI5_ / Ox. Oxj, OZI_/Ox.09:. and Oz i_/ Ox.O_.• We havel i J I j

= REM + RES + r

in which

R is the vector from the radar to the vehicle

REMiS the vector from the Earth to the Moon

_S is the vector from the center of the Earth to the radar

m

r is the vector from the center of the Moon-to-the-vehicle•

• -- ,_ --

1% = REM + RES + r

Starting with

we find

= R • R

m

1%dR = R" dR

RR = R" R

oh - o_
R 0--x.--.=R • 0x.

1 1

• OR
Ox.

1
3



and

1%2 82 1_ 81:%2 81% + 81% 1:% 81% 1
8X. 8X. 8x. 8x. 8X. 8x. 2

Z J J 1 J z

81_ 8R. 2

8x. 8x.
.1 z

Then by various manipulations and substitutions, we find

8z_ l
8x. 8x. = "

I j

8R 2 -- 8_ 81<2 "-- 8R
R" -- + R" --

8x. 8x. 8x. 8x.
j z z j

3R 8R 2 8R 2
+

4R4 8x. 8x.z a

Now

R 2

8R 2

8x.
l

1 81%2 8R 2

R2 8x. 8x.m j

2 2 2
x I + x 2 + x3

Z X.
1

Xo X°

4 _ l_
I% R

but

I X. X. I
3. L
1% 1% i

2
<

1

, i_j

, i_j

SO

1 81%2 81%2

1%2 8x. 8x.z 3

Also,

I 8R 2 --

z_ g_--. 1%"
a

< 2+26..
-- ij

OR i
_x---7= -A- x._.

3. j z

SO

4



2R

3R. 2 -- 8R. aR. 2 "--
R • -- + R •

3x. 3x. ax.
j 1 1

]aR
_X.

J

x. i. +x. x.

R

Fur the r,

x 2 + x.2 -= p2
i 3

, i_j

2 R 2 2X. _ - X.

J -- 1

151"_ c_-_-x_'/"

Ixil+lxal= Ix,__!
R -- R

X.
1

7

and also

.!q I + I;_jl=.d-L-; _,_j

SO

xaq +xl_a .= IxaIIql +Ix,tl_at
R -- R

ixil+jx ll il ÷Ix t

For i = j it can be easily seen that the above inequality is also

true. Then,



azf_ I. = z I_1 3 _1
8x i 8x. -- 1%Z + 1%2j 4

(2+2
6ij)

Z 1%2
, i_j

i=j

and

In like fashion it can be shown that

_D21 _ _--_, i_j
-

ax i a_j , i = j

ozf_
O.

ax. ax.
1 a

Then for Ax and A_ small, the errors in 8t_/8x. and
p q 1

a_/a_:, are
1

oA oR < Ikl
8x. 1%2

l ref
7 7_ i_xjl+ _I_I

1
+ m

21%

a

aR

1
xi <= I_xjl÷i

• ref

6



These error bounds are not least upper bounds since we have

not considered the fact that the terms can not all be maximum simul-

taneously. Consequently, our analysis from this point on shall err

on the side of safety.

Using the results of Apollo Note No. 198, which indicate that

Doppler radar data alone will provide position accurate to 140 meters

and velocity components to better than 5 meters/second, we find

8x. _ --_- 5 (140) + Z----R
i ref

5

< 700--Iii + __10 m/sec

R2 1% m

and

8x.

140 m/sec.

i% m/sec

Now, with the LEM having circular velocity about the Moon

and an observing station on the rotating Earth, the largest value of

is very nearly

1700 + 490 = 2190 m/sec.

and R is about 0.38 x 109 m/sec, so

, 8I_ _ 8R
8x. < 2.63 x i0 "8

i ref

and

i ef

m/sec

rn

-7 m/sec
3,7 x lO

m Tsec

7



Then a position error of 140 meters and velocity component
-6

errors of 5 meters/second lead to an error of less than 5.73 x i0

meters/sec (=140 x Z.63 x 10 -8 + 5 x 3.7 x 10 -7 ) in the computed

value of _, and this is far less than the errors in the measurement

of _ . Thus, we have shown that the values of M computed on the

trajectory determined from the radar data alone may be used in the

Kalman-Schrnidt method in determining the trajectory on the basis

of combined data sources.

Computing Time

In order for the MSFN to be useful in determination of the

vehicle position and velocity in powered flight, it is necessary that

the throughput time for processing a set of input data not exceed the

interval between successive sets of input data. Otherwise, the com-

puted results would become available only with ever-increasing delays.

Since we have assumed that data is taken every second we must

demonstrate that the corresponding computing time is less than one

second. This we shall do.

In determining the vehicle position and velocity, it is convenient

to use a set of inertial coordinates. We shall choose a set of co-

ordinates x', y', z' fixed in direction and with origin at the center

of the Moon. Each second we must express the positions and velocities

of the three MSFN stations, and the accelerations indicated by the

IMU in these coordinates.

A number of coordinate systems are employed. The xyz

coordinate system is Earth-centered and non-rotating. The z axis

is in the direction of the Earth's angular rotation vector and the

x axis is in the plane of the prime meridian at some arbitrarily

chosen time. The position and velocity of the Moon with respect to

the Earth, or of the Earth with respect to the Moon can be expressed

in this coordinate system; we shall assume that these components

8



D

of position and velocity have been computed beforehand for the ascent

epoch and are stored as six polynomials of, say, eighth degree in time.

The xyz components of MSFN station location are

x 1 = c 1 cos (0_et + =i)

Yl = c 1 sin (._e t + =1 )

z 1 = k I

in which c I and c 2 are constants, _e is the angular rate of rotation

of the Earth, and _ is the longitude of the MSFN station. The

corresponding components of MSFN station velocity are

Xl = "_e Yl

Yl = _ Xle

= 0
i

We assume that the sine and cosine functions are computed

from polynomials

3 5 7 u9
sinu = a I u + a 3 n + a 5 u + a 7 u + a 9

Z 4 6 8 i0

cos u = a 0 + a 2 u + a4 u + a 6 u + a 8 u + al0 u

Then, each second, by suitable programming, we can compute

_I' and z I using about 15 additions or subtractions andX 1 ,YI' Z 1 ,

17 multiplications, and we can compute the position and velocity of the

Moon using 48 additions and subtractions and 48 multiplications• By

adding these positions and velocities, using 6 additions, we can obtain

the position and velocity of the Moon with respect to the MSFN station



in the x, y, z coordinate system.

The positions and velocities of the Moon with respect to the

other two MSFN stations can be computed with less effort by using

stored values of the sines and cosines of the longitude differences

between the stations. We have

xz = c z cos (¢Oet + _Z)

t + a,1) cos (=Z " =i) - sin (Wet + =i)

(_Z-_l)]sin

Cz
c1 [Xl c°s (crZ" C_l)-Yl sin(atZ " Crl) I

YZ = c2 E lx I sin (_2 - _I ) + Yl cos (_Z - _i )
cI

z2 = Xz

"We Y2

coe xZ

z2 = 0

and a similar set of equations for the third station• Finding xz, Y2'

zz' x2' 92' and _'Zrequires only 8 multiplications and 2 additions.

i0



A like number will determine x3, Y3' z 3'x3' Y3' and _'3" Another

lZ additions yields the position and velocity of the Moon with respect

to each of these stations in the x, y, z coordinate system.

Using the a priori position of the LEM initially, and the

position computed therefrom using radar data alone thereafter,

we wish to compute the velocity and position of the LEM for use in

monitoring and as a reference tr,_jectory to obtain better estimates

of LEM position and velocity.

Letting _be the fixed 3 x 3 matrix that rotates vector com-

ponents from the x, y, z system to the x', y', z' system, six matrix

multiplications of the form _, in which _ is a vector of three

elements, are required to obtain the position and velocity of the

Moon with respect to the three MSFN stations. Each of the matrix

multiplications requires 9 multiplications and 6 additions.

In summary, up to this point, we have

Additions

Xl' YI' Zl' _I' _rl'_i 15

Position and Velocity of Moon (x,y, z) 48

xz' Y2' zz' X2' _rZ'_'Z Z

x3' Y3' z3' x3' Y3' z3 2

Position and Velocity of Moon

with respect to MSFN stations _ 36

Position and Velocity of MSFN

stations with respect to Moon (x',y', z')

Multiplications

17

48

8

8

36 54

139 135

Ii



From Apollo Note No. 19Z or No.
3

• i xij)Rj Rj = Cxl" ' _i
i= 1

198, we have

or

in which R. is the distance from the LEM to the j-th MSFN station,
J

x_ are the coordinates, x_.x 1j are the coordinates of the j-th MSFN

station in the x', y', z' system of the vehicle in the x', y', z' system,

t_j is the measured range-rate of the vehicle from the j-th MSFN

station, and _¢' are the velocity components of the vehicle in the
1

x', y', z' system. We require 9 additions to obtain the elements of

x! - x:.. Then we may obtain R. from
1 1j j

Rj-- ix',- x,,
I"--

requiring 3 multiplications, 2 additions and a square-root. Apollo

Note No. 198 indicates that, using radar data only, the position is

known to better than 150 meters; as a consequence the range is

known to better than one part in 2.5 x l06 and using an estimate of

range of this order of accuracy a single iteration of the form

1
R. =

j -2- IRj, approx

3

I Ix_-x!1j
i= 1

+

j,approx

will suffice for the square root.

Then we may solve for _ as
1

1Z



= [ x,] "l ['r

This involves 3 multiplications to obtain the elements of I_ f(, 30

additions, 30 multiplications and 3 divisions to obtain the inverse

of X', and 9 multiplications and 6 additions for the matrix product.

The new values of x', y', and z' for the LEM are obtained by

approximate integration

x' = X'ol d + _' T

Y' = Y'old + 9' T

z' = z' + _' T
old

involving 3 multiplications and 3 additions.

Summarizing, we have

Additions _Multiplications Divisions

Previous Total 139 135 0

x:- x:. 9 0 0
i ij

(xl - xlj)z 6 9 0

R. 3 3 3
J

_' 36 4Z 3

x' 3 3 0
ne%v

196 19Z 6

13



In order to combine data from the on-board system with that
from the radar, we must determine the matrix M, the elements of
which 8_./8x! . Nine of the elements of M are of the form

3 i

k x - x!
I j i 13

M..

13 R.. R.. R.. '
J J J

nine are of +__e form

J

and the remainder are zero. Computing M requires 9 additions, 9

multiplications and 21 divisions.

The predicted values of position and velocity at time tn+ 1

must be used to predict the values of the rneasurables at that time.

We have

= 6X + @ 6Y + _ gn8Xn+l, p _n+l, n n n n n

in which 6Xn+l, P is the 12 x i matrix of predicted position, velocity,

tilt and tilt rate predicted for time tn+ 1 6X is the 12 x 1 matrix
• , n

of the position, velocity, tilt and tilt rate at time t based on all
n

measurements at times up to and including tn, 6y n is a 1 x 3 matrix

of on-board measured accelerations in the interval tn to tn+l, and

_n and _n are matrices given in Apollo Note No. 195. Most of the

elements of _n+l _ and _ n' however, are zero, so computing,n' n

time may be saved by not programming the computations as matrix

multiplications, but by writing out the terms of the products, instead.

Letting:

= @ , + a z, @y,_/x - ay, z

_y = - az' @x' + ax' @z'

7z = - ax, @y, + ay, @x'
14



and

--- -a .iO_zl +v x _ az, o_y,

v -- -az, (ox, -_-y ' axl o_z ,

vz -ax, _ov, +: ayl C°xl

we have

5x
_n+l, n n

Z

8x' + T 8k' + T
n n --2-- Wx +

Z

+ TS_-' + T8Y'n n

7.

8ZI n + T 8 ZWn + _2

2

n TYx _ Vx

Z

8_f,n+ T_z + T--Z-- Vy

2
6_' + + T

n T_Z T VZ

"yy +

_z +

0El + TC0XI

Oy, + TCOy.,

0Zt ,-_ TCOZt

o_x ,

I _y,

O_zi

3
T

-'-6--v x

3
T

--6-- Vy

3
T

-'6-"--vz

15



L_n
a

n

Z
T

a X I

L

Z
T

ay)

Z
T

aZ1

T ax,

T ay,

Ta
7.

0

0

0

0

0

0

Also, the distance of the vehicle from the center-of-the-Moon

is r, and for these comp_ltations we may take the acceleration due to

gravity as A_/r 3, although we may not predict rendezvous with such

a simple representation. We have

2 x,2 y,2r = + +z

r = (r2) l/z

,2

Then,

16



_n n

m

_ _x' -r2
3 2

2
- BY' T

3 2
r

, Z
- .[.1.Z T

3 2
r

r

r

3
r

0

0

0

0

0

0

and

= 16n+1 5x + q_ a + _n gn6Xn+l, p ,n n n n

All of this requires 39 additions, 52 multiplications, 1 division

and 1 square-root. The square-root operation to find r can be replaced

by an iterative procedure, as before; since r is known to better than

1 km and r is of the order of i.8 x 106 m, only two iterations are required.

17



We have that

Pn+l = _n+l n U 6T + • R _T, n n+l,n 'n n -n

but Pn+l is a symmetric matrix so only slightly more than half of

its terms need be computed. Further, as before, most of the terms

of 6n+l, n and _n are zero, so Pn+t can be obtained by significantly

fewer operations than ordinarily required for matrix multiplications.

We have, letting _ be _n+l, n Un'

Z Z
a T a T

lj = Un, lj + T Un, +j + z - Y U2 Un, 8; 2 n, 9j

3 3
a T a T
z

+ ---6--- Un, llj - _ Un, l Zj

with similar expressions for _2j and _3j' and

Z
a T

_4j = Un, 4j + az_'Un, 8j " a _-U + zy n, 9j 2
--u

n, llj

z
a T

- _Y U
Z n, 12j

with similar expressions for _5j and _6j' and

7j = Un, 7j + r Un, 10j

_8j = Un, 8j + T Un, llj

9j = Un, 9j + TUn, 17.j

_10, j = Un, 10j

Ell,j = Un, llj

_lZ, j= Un, 12j 18



requiring 360 additions and 369 multiplications.

6T ,n' we haveLetting An+ 1 denote _n+l, n Un n+l An+l =_T
n+l, n'

but An+ 1 is symmetric, so we need only compute the terms on and below

the main diagonal.

An+ l,j I = _j i

An+l, j2 = _jZ J = Z, .... iZ

An+l, j3 = _j3 J = 3 ..... 1Z

An+l,j4 = _jl w + _j4 J = 4,..., 12

An+l, j5 -- _jZ _ + _j5 j -- 5,..., i2

An+l, j6 = _j3 r + _j6 j : 6 .... , IZ

Z Z
a T a T
z

An+l, j7 = -_jZ 2 + _j3 _ - _j5 az r + 606_ ayT + _j7

j = 7,..., iZ

with similar expressions for An+l, j8 and An+l, jg' and

An+l, jl0 = "_j2

3 3 Z Z
aT a T a T aT
Z Z Z

T + _j3 -Y6--- _j5 z + _j6

+ _j7 T + _jl0' J = i0, ii, iZ

with similar expressions for
An+l,jll and An+ I, j1Z.

19



All of this requires 114 additions and 124 multiplications.
T

_n l_n _n is independent of time, and so need not be computed
T

as part of these calculations. Further _n l_n _n is a diagonal matrix

and _n Rn Tso the cost of combining 6n+l, n Un _n+l, n _n is just

IZ additions.

Summarizing, all of these computations we have

Additions Multiplications Divis ions

Previous Total 196 192 6

M 9 9 Zl

5Xn+l, p 41 56 3

An+ 1 114 IZ4

Pn+l iZ

372 381 30

The maximum times required for the double precision add,

multiply and divide instructions in the IBM 7094 are respectively Z6,

22 and 38_sec. Using these figures the computation time is found to

be 0. 019 sec. This time, of course, must be multiplied by a factor

of 3 or 4 to allow for other necessary computer operations such as

loading, storing, input, output and internal bookkeeping. The required

computing time is still less than 0. 1 seconds each second.

Certain other necessary computations, such as checking

the validity of incoming data must also be performed, but the time

required for these computations is small compared to the computations

already described in detail. Thus it appears that the determination

of vehicle position and velocity in powered flight is not limited by

required computer time.

Z0
/



Communications

The data required from each of the MSFN stations each

second in the determination of position and velocity in powered flight

on the basis of combined measurements consists of 2Z binary digits

to specify range-rate to 1 cm/sec, and 23 binary digits to specify

time to 100 _ sec within each mircate.

According to page 500-6 of the Program Instrumentation

Requirements Document dated June IZ, 1946, all of the stations

used for tracking at lunar ranges, with the exception of Goldstone

and possibly Canberra, are to be equipped with 2000 bit/sec, high

speed data lines to Houston. As a consequence, unless these lines

are to be shared sequentially by the remote stations, there is no

insuperable problem in transmitting the 45 bits / sec required for

tracking during powered flight. (Note: If ANBE is the abbreviation

for Canberra, then Canberra is also equipped with a high-speed

data line. )

There may, of course, still be operational problems in

communication due to the necessity of conforming to established

data formats, noise on lines, and possible time-sharing of lines.

Zl



The Bissett-Berman Corporation 2941 Nebraska Avenue, Santa Moniea, California EXbrook 4-3270

APOLLO NOTE NO. 241 B. Murphy
3 August 1964

COMPARISON OF INTEGRATED AND

PATCHED CONI C TRANSITION MATRI CES

The object of this note is to demonstrate that the translunar

transition matrix (Q matrix) based on a patched conic process is

nearly the same as that derived on an integrated trajectory basis.

In particular, it is desirous to show that the patched conic transition

matrix can replace the integrated-trajectory based matrix with

negligible resulting error in predicted position, in this case, at

intersection of LSOI.

In NASA Technical Document, D-181Z, A Study of Some

Transition Matrix Assumptions in Circumlunar Navigation Theory,

transition matrices for an integrated trajectory up to LSOI are

found by a first-order-difference perturbation method for various

times. This integrated trajectory considers the effects of some of

the near planets, the Sun, the oblateness of the Earth, and the Moon

on the translunar orbit. The patched-conic technique, by virtue o£

its being a two-body problem, yields exact (for this model) analytic

values for the elements of the Q matrix, (see Apollo Note No. 8Z).

The numeric matrix for various initial conditions is found by using

the Program A part of the error analysis program described in

Apollo Note No. 186.

However, a direct comparison of these two Q matrices is not

possible since different coordinate systems are used. The NASA

system is defined as Earth-centered, inertial, right-handed, orthogonal

and the positive x direction pointed toward Aries. The Bissett-Berman

system, on the other hand, defines a coordinate system that is inertial,

Earth-centered, right-handed, orthogonal with the positive x direction

along the initial range vector and the y direction in the plane of



P,(t=O) and _ (0) with 9"(0) positive. Thus, the transformation

between these systems is a proper orthogonal rotation. That is,

a matrix A is wanted such that

RZ = A_I (1)

and
n

R z = A R 1

where _ is the range vector and i_ is the velocity vector• The sub-

script 2 denotes the B-B system, and i, the NASA system•

Having found A by some devious means (see Appendix) we

can say

_Z -- B _1

(z)

(3)

or

x I = B T x2 (3a)

2',X

m

where x is the state vector =
Ay

Z_z i

z_ s

-4

whose components are deviations from referred trajectory

A 0

and B=

0 A
(4)

Now, by definition of the Q (transition) matrix,

Z



m

xl(t) = Ql(t) Xl(O) (5)

Then using (3a)

BT-- xz(t) = Q
or

l(t) B T -Xz(0)

Xz(t) = B .Ql(t) B T -xz(O)

(6)

(7)

Comparing this to

Xz(t) = Qz(t) =z(O) (8)

we see that

Qz(t) = B Q1(t)B T i
(9)

which is the desired relation between the two transition matrices.

Computations

The orbit parameters used for Program A of the Error Analysis

Program are the transformed orbit parameters used in the D-181Z

Technical Note. These results are compiled in Table i. Note that

while al, a 4 and a 5 (Xz(0), kZ(0) and _Z(0)) completely determine

the orbit in the Bissett-Berman system, the az, a 3 and a 6 (yz(0),

zz(0), _2(0)) are calculated only as a check on the transformation,

as these should be zero.

The Q matrices resulting from Program A using above orbit

parameters comprise Table Z. The NASA Q matrices from Note

3



D-181Z are then operated on by B according to (9). The outputs of

this program are compiled in Table 3.

A plot of 8___zand _____zin the transformed NASA transition

st

matrix is included in Figure Z. This _vas done as these elements

appear to be thel _rn3st S@z_ignificantly in error compared to the patched

conic solution I z-_ = -- = 01. For comparison _ is included.

st I

Conclus ions

Comparison of the patched conic based transition matrix

and that of the integrated trajectory sho_vs only small difference

early in the orbit. However, near /_SOl, in general, the differences

increase. Note especially that the elements in the third rosy and

sixth row are the most in error. The increase in error near LSOI

is not surprising because of the large effects of the Moon and Sun

on the integrated trajectory.

As just pointed out, the elements in the third and sixth row

are the most in error. In particular, the first, second, fourth and

fifth elements in these rows, i.e.,

O z(t) and _ _(t)

a (x, y, Y)t=0 a(x, y, Y)t=o

In the two body solution, these terms are zero at all times. For

the integrated trajectory, these elements will be non-zero, especially

if the vehicle orbit plane is out of the Moon's orbit plane. It is not

obvious why this situation should exist, however, as it would seem

that the "best" orbit would fall in this plane. Compounding this situation

is the fact that in the last integrated transition matrix (t = 56 hr. ),

the 8z element is almost as large as 8___zz. Further investigation

of this out-of-plane problem would require some knowledge of the

4



orbit from NASA, as the description of their coordinate systems

and the orbit in Technical Note D-181Z is, at best, unclear.

Among this same line of investigation, it is interesting to

note that the plane of this orbit (defined by the position and velocity

vectors) for the integrated trajectory was found to rotate by .018

radian (i. 0 °) between the 8 and 56 hour points. Thus even if the

vehicle were initially launched in the Moon's orbit plane, at a later

time it would be out-of-plane by 1°.

In addition, it should be pointed out that errors in predicted

z and _ (due to the previously mentioned errors in the transition

matrices) do not contribute very much to the predicted position and

velocity as the z components of velocity and position are much smaller

than the x and y components.



APPENDIX

DERIVATION OF THE ROTATION MATRIX

In order to find the rotation matrix, consider the coordinate

systems at t = 0. As these systems fixed relative to each other the

rotation matrix is independent of time and that found at t = 0 is good

for all time. The two systems are depicted in Figure 1 at t = 0,

where i, j, kate kl

Jz R

. Jl

Ji 1
To Aries

Figure 1.

unit vectors in the x, y, and z directions respectively.



Now we wish to find the elements of the A matrix, a..
Ij

xR2 = Y2

LZzj

F: A _l = aij j

x 1

Yl

z
1

w.

(i0)

We know

P'_"= x2 i2 = Xl il + Yl Jl + Zl kl = Riz
(ii)

:- :% = g" iz = IR I : xl (il" iz)+ Yl(Jl" iz)+ _i (kl" iz) (iZ)

iI • iz = cos _il,iZ

Similarly

Yl

jl " i7. =

z1
kI " iz = -g-

x I
(13)

(14)

(15)

whe r e

2 2 2
i_ = (Xl +Yl + Zl )I/z (16)

•". xZ =
Xl Yl Zl

R Xl + _ Yl + _ Zl (17)

Thus,

x 1

all =

z l

a13 = (18)

7



As a consequence of the definition of the x2, YZ' z2 coordinate

system, R and R are coplanar with the iZ and J2 vectors.

Note that this product is positive since @ is positive (_ (0) 0).

Then

IKx iI
k Z -

or in terms of coordinates

k
2

(Yi _i -Yi zi) ii + (zi ki - _i xi) Ji +(xiyi "iiYi ) k.1

Then z z--_, • k z (22)

(2i)

yielding

Yl Zl " Yl Zl ZlXl - ZlXl

a31 = D ; a32 = D ; a33 =

xi Yi - ii Yi

where [ z )2 )Z i I/2D = (Yl _i - Yl 1 + (Zl&l " _iXl + (Xl Yl " &IYl )2

]

D

(2"_wj

(24)

To find the remaining el ements of the A matrix, the fact that

the system is right-handed is utilized.

8



J2 = kzx i2

= (a31 il + a32 31 + a33 kl) x ( all i I + alZJl + a13 k I)

(25)

(a32 a13 - a33 a12) iI + (a33 all

+ (a31 ai2 - a3z all) k I

- a31 a13) Jl

(26 )

Y2 = _'" J2 = (Xl il + Yl Jl + Zlkl) " J2 (27)

(a32 a13 - a33 a12) Xl + (a33 all - a31 a13) Yl

+ (a31 a12 - a32 all) z I

-A
}

\

J(28)

= aZl Xl + azz Yl + az3 Zl
(29)

Using these derived relations and knowing the values of Xl(0 )

Yl(0), and Zl(0 ), the A matrix, and consequently the similarity

matrix B, can be formed. The resulting A matrix is

_!
-.32553635 .83446129 .44463514 !

-.94430422 -.26335698 -.19714109 i

L '• e . !- 047408837 - 48406345 87374765 a

9



as a check

3

i= 1

2
a..

U .99999996
= 99999996

999999990

j=l

j=Z

j=3

10
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Table i.

Transformed Initial Conditions

(Orbit Parameters )

Xz(o) - Bx l(O)

a I = x2(O) = •64657643 • 107 meters

a2 = y2(0) =
-3

•36 " i0 meters

a3 = z2(0) =
-i

•25 " i0 meters

a 4 = k2(O) = •32727561 " 103 meters/sec.

a5 = _-2(o) = •ii0270744 " 105 meters/sec.

a 6 = _2(0) =
-4

•17 • i0

12
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The Bissett-Berman Corporation 2941 Nebraska Avenue, Santa Monica, California EXbrook 4-3270

APOLLO NOTE NO. 242

L. Lustick/

H. Engel

4 August 1964

EARTH ORBIT INSERTION ACCURACY FOR

VA_OUS LAUNCH AZIMUTHS

This Bissett-Berman Apollo Note reports on the accuracy

with which the position and velocity of the vehicle can be determined

at times just after engine cutoff for Earth orbit insertions resulting

from launches from Cape Kennedy at different azimuths.

The assumed conditions are illustrated in Figures 1 and 2.

Tracking begins at SECO plus l0 seconds. From SECO plus 20 seconds
Z

until SECO plus 33 seconds there is a thrust acceleration of 0.8 ft/sec.

in the direction of motion. The launch azimuths to be investigated

are from 81.5 ° to 105 °. The station8 that can see the vehicle more

than 5 ° above the horizon during portions of the period of interest

are Cape Kennedy, Bahama, San Salvador, Grand Turk, Antigua

and Bermuda.

From Figures 1 and 2 it appears that for any launch azimuth

between 81.5 ° and 105 ° one station can track the vehicle from SECO

plus 10 seconds until SECO plus 2.5 minutes. This station may be

either Bermuda or Grand Turk, depending on the launch azimuth.

For most launch azimuth one of these two stations can track for an

even longer time.

For the more Northerly launch azimuths, additional stations

can track for a shorter time after SECO plus I0 seconds. For the

more southerly launch azimuths, Antigua can start to track from as

early as SECO plus 1 minute until after SECO plus 5 minutes.

The accuracies with which vehicle position, velocity and dive

angle can be determined have been ascertained for launch azimuths

of 81.5 ° and 91.8 ° under a variety of conditions. In each case the

a priori knowledge of position and velocity at SECO have been assumed

to be 1150 m and 4 m/sec, radially, 760 m and I. 9 m/sec, along the

circular orbit path, and 6240 m and 16 m/sec, perpendicular to the

orbit plane.



SECO _Start of Tracking

I _ Thrust Acceleration
/....

i

0 1 2. '

Time (min)

I

4

I
.5

Launch

Azimuth

81.5 °

-4 Cape Kennedy

I Bahama

i San Salvador

I Grand Turk

• Antigua
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I
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Figure 1.
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For the 81.5 ° azimuth launch, the desired quantities have

been determined with only Bermuda tracking, and with both Bermuda

and San Salvador tracking. For the 91.8 ° azimuth launch, the desired

quantities have been determined with only Bermuda tracking, and with

both Bermuda and Grand Turk tracking. In each case the computations

have been performed in the absence of measurement bias error and

tracking station location errors, and also with measurement biases

of I0 meters in range and 0.2 mils in angle, and station location

errors of 152 meters in each direction. The measurements from each

radar used have been assumed to have been obtained at 6 second intervals

with measurement noise of 20 meters in range and 0. Z mils in angle.

All these values are standard deviations (i o-).

The thrust which results in an acceleration of 0.8 ft/sec. 2 from

S_QO plus 20 _econds to SECO plus 33 second is _ssumcd _o be known

perfectly in magnitude and direction, hence, so far as the theoretical

ability to determine vehicle position, velocity and dive angle is con-

cerned, this thrust can be ignored; it does not substantially alter the

orbit.

In Figures 3, 4 and 5 we present the results of our theoretical

computations for launch azimuths of 81.5 ° and 91.8 ° . Results for

launch azimuth 81.5 ° are indicated by circles (o), results for launch

azimuth 91.8 ° by crosses (x). The notation "Biases" with a curve

indicates presence of the measurement biases and station location

errors described above.

It can be seen that varying the launch azimuth can have a sub-

stantial effect on the uncertainties in position, velocity and dive angle.

Introduction of measurements biases and station location errors, how-

ever, has a far larger effect. In the absence of measurement biases

and station location errors, a second station observing the vehicle

simultaneously does not substantially improve the estimates of position,

velocity and dive angle. In the presence of measurement biases and

station location errors of the sizes assumed, the use of a second station

greatly improves the estimates.
4
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If the observations start at SECO plus 5 seconds instead of

SECO plus i0 seconds, the principal effect is merely to shift the

curves of Figures 3, 4 and 5 left by a twelfth of a minute, and so

these computations have not been performed.

The thrust that exists from SECO plus 20 seconds to SECO

plus 30 seconds, of course, can not be ignored in the method

actually to be used in computing flight parameters. For the

powered portion of flight after SECO, a modified Kalman-Schmidt

method, such as that described in Bissett-Berman Apollo Note No.

240, "Determination of Position and Velocity in Powered Flight by

Combined Measurements, " may be employed. As that note indicates,

the computation time will be small.

Another way in which to account for the thrusting period is to

use a polynomial approximation to the orbit.

we can write

In the absence of thrust,

2

-- I _ P°'5_° ]_,(t) : R° cos _ t+ o (0jot3 (_ot4_L o T ) + 8 ) ....

-- 7 _ 3 (Po- 5 Z)
V° ] sin_o t + o (_0ot)4 + o (_0ot 5

+ _o I o 4 40 ) "''"

in which

0

and

m m

V .i_
O O

2

O O

A

V • I%
0 O

O O

A A

& v • K
O O

_O

= o o 1 P

o_Z R 3
O O

according to Bissett-Berman Apollo Note No. 31. For a nearly

8



circular orbit, as at Earth orbit insertion, V--° is nearly orthogonal to

R° ; for a vertical velocity of 10 m/sec, s ° is 1.26 x 10 -3 . For a

nearly circular orbit _ is approximately unity and so
O O

(vZo - v z ) R V z R
o C 0 C 0
= + 1

(3o _

= C 0 = - 1

in which V c denotes circular velocity; for a difference of l0 m/sec.

in velocity, Do is Z. 5Z x 10 "3. For one minute of flight _o t is approxi-
O

mately O, OIZ5 r_d, Thus

A
106

F
10 -3 ) 10 -6 )6.4 x | cos 0.012.5 + (0.63 x (1.95 xR (1 rain) = R °

+ (0.315 x I0-3)(z.44 x i0-8)-.... ]

+ V ° 6.4 x 106 L sin 0.0125 + (0.315 x 10 -3 ) (1.95 x 10 -6 )

+ (1.89x 10-4 ) (3.04x i0-i°)-....]

indicating that for the times of interest we may represent R (t) simply by

m

3 + -- sinco t+(t) = Ro cos co t + o o "_o (_ot) _ _ o -_-- I
0

Then, for the small thrust, of short duration, with which we are

concerned, we may write



_.(t)= _,
O [ 31 ,_o "[

cos _ot + T (_ot) + -_o sin_o T (_ot)4 I

+ T tz
Zm

0

As a result, either in the thrusting or non-thrusting case, the

measurements may be fit by a simple combination of a polynomial and

trigonometric function, which may result in a shorter computation time.

This approximate method does not introduce any appreciable errors in

the estimate of the orbit, but it has the disadvantage that it is useful

only for very short arcs. The modified Kalman-Schmidt method, on

the other hand, may be applied over a much longer arc.

10



APPENDIX

The Bissett-Berman Error Analysis Program does not corn-

pure the variance of dive angle. It does, however, compute the co-

variance of position and velocity, from which the variance of dive

angle may be determined• Letting 6 denote the dive angle, we have

z

sin 6
r • r

vr

cos 6 d6 = -
r. d_ +dr.r

vr

Y but 6 is 0°, so cos 6 = i, and

r. dr + dr- r
d6 = -

vr

+ dy
vr

+ xd_ + yd_r

Now

so

and

x = r cos 0

= r 0 sin 0 = - v sin @

y = r sin 0

= r @ cos @ =vcos @

d6 = [- sin 0 --dx + cos 0

L r

dy + cos O d_x
r v

+ sin 0
v

ii



2
: (dS :

2
sin @ 2

2 o-N
r

2
cos @ 2

+ o-
Z y

r

2 2
cos @ 2 sin @

+ _. +
2 x 2

V V

2
0_o

Y

Z sin @ cos @

Z
r

Pxy o- o- -x y

2 sin 9 cos @

rv

2 sin?.9

rv Pxy o- ov

x y

2 cos g @
+

rv py_ wy x

+
Z sin @ cos 9

rv py_y o- _ +Y Y

2 sin @ cos @

Z
V x y
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The Bissett-Berman Corporation 2941 Nebraska Avenue, Santa Monica, California EXbrook 4-3270

APOLLO NOTE NO. 243 J. R. Holdsworth

5 August 1964

FURTHER COMMENTS ON THE OPTIMALITY

OF PARTIAL BOOSTING

The purpose of this brief note is to fulfill a promise made in

Note 239. In Apollo Note 183 it was shown for a simple one dimen-

sional case that the corrective boost which minimized the final mean

square position miss was not that which nulled the predicted position

miss to zero.

In the present note we shall extend that result to the somewhat

more realistic three dimensional case. Furthermore, for illustrative

purposes we shall make the additional assumption that the only uncer-

tainties are those arising from the execution error. This allows a

clean formulation and straightforward solution of the optimization

problem. The results obtained are valid when tracking uncertainties

are considered also.

The notational conventions and concepts are essentially those

of Apollo Note 239. However, our assumption of perfect positional

information together with the fact that we are performing just one

corrective boost permits a much simpler treatment.

Denoting by Pf(0), the terminal position miss vector if no cor-

rective boost were made and by Pf(1) the terminal position miss

vector resulting from the application of one boost we may write:

Pf(1) = pf(0) +  LxV

In equation (i) _ is a 3 by 3 known time dependent matrix and

AV is the actually executed impulsive corrective boost. As in the

earlier note we assume that the actually executed boost AV may be

written in terms of the commanded boost AV as:
c

(i)



z_V = (I , _) z_V c (z)

where:

i ._

and e =

0
%

0 0

1 0

0 1

_ 0 0

x

0 e 0
Y

0 0
Z

(3)

(4)

where ex , ey , _z are independently and identically distributed

dimensionless random variables with zero means and known

2
variances o- .

Equation (2), together with the assumptions we have made

regarding the distribution of the random matrix e, imply that the

magnitude of the execution error vector is proportional to the

magnitude of the commanded boost AV c We digress briefly to

note that i_ actually implies more than this however, for if we denote

_V _V the orthogonal components of the commanded
by Z_Vcx, cy ' cz

boost vector, and if we let 6(_V) denote the execution error vector,

then from (2) and (4) we have:

6(mv) (5)

or:

6(my)
x

Y

z

AV
CX

aV
cy

AV
CZ

(6)

2



Equation (6) shows that each component of the execution error is

proportional to the corresponding component of the commanded

change which is a somewhat stronger statement, and may or may

not adequately model the physical situation.

We mention this parenthetically to illustrate the necessity

_ precisely describing +_ _ _ mR=+v_ .... _ture of +_ execution error ......

is, it is not sufficient to merely state that the magnitude of the

execution error is proportional to the magnitude of the commanded

boost since there are several distinct random models satisfying

this condition. Hence for a given calculation some care must be

taken to ensure that the in_plications of a particular formulation

do not violate physical facts which are known from extra mathema-

tical considerations.

Returning to our problem we see that from equations (i) and

(2) we may write the square of the nagnitude of our terminal position

miss after one boost as:

IPf(I) [2 i)T i)= Pf( Pf( (7)

or:

= TIPf{1)[z Ief{0)iz + zef(0) _{_+_)nv c

+
AV cT'[(I+ _)_T _(I+ e) IAVc

(8)

Taking the expected value of both sides of equation (8),

the mean square position miss after one corrective boost may

be written:



E
iPf(

-12 T= I Pf(0) + 2Pf(0) ,3z_vc

[ { }]+ _V cT _T _+ o-_2 diag _T _ AVc

(9)

Now since we have assumed that there is no uncertainty in

positional information then Pf(0) is known exactly to the person

commanding the boost. Since the matrix _ and the constant
2

o- are also known, the optimum boost problem, for a fixed
e

boost time as we shall assume, reduces to the problem of judici-

ously choosing _V c to minimize the expression given by equation

(9).

To minimize equation (9), we equate its variation with

respect to the vector _V c to zero to obtain:

(i0)

which after some easy manipulation allows us to write the following

expression for the optimal commanded boost.

(ll)

4



On the other hand it is easy to show that the commanded

boost which annuls the predicted position miss is given by:

-1
z_v c = - _ Pf(0) (12)

Since, in general, the right-hand sides of equations (11)

and (12) are not equal, it fcllows that the commanded boost which

minimizes the mean square miss distance is not that which cancels

the predicted position miss. However, inspection of the two ex-

pressions immediately reveals that in the region of negligibly small
2

o- the two boost doctrines approach one another.
e

In conclusion we write below the final mean square position

miss distances corresponding to the optimum and suboptimum

boost doctrines given by equations (10) and (ll).

-1

i
opt

(13)

(14)

Equations (13) and (14) similarly indicate that for small {Te2

the resulting mean square misses are roughly equal. The expression

given by equation (13) is naturally smaller than that given by (14).

Numerical comparison for specific cases may be made by direct

computation from the above equations.
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APOLLO NOTE NO. Z44 J. Johnson

5 August 1964

LEM SUPPORT: USE OF ON-BOARD DATA

Purpose

The purpose of this note is to determine whether data from

malfunctioning on-board instruments should be used, in conjunction

with radar measurements, to assist in monitoring. The criterion

used is comparison of estimator variances so obtained.

Introduction

We will assume that some portion of the LEM on-board naviga-

tion units have failed but that it is still possible, up to a Gaussian

noise, to functionally specify the data provided by these units. This

function may, however, involve further undetermined parameters.

Two cases are considered for data received from the on-board

instruments: that in which statistics of the corrupting Gaussian noise

are known, there is a single orbit parameter of interest, and various

error parameters must be also estimated in order to use the data;

and that in which the variance of the Gaussian noise process is unknown

and only orbit parameters are involved. As in previous notes, we

assume that the parameters are independent and a large number of

measurements are used, so that the information matrices considered

are all nonsingular. We will find in both of these cases that the
g

on-board data should still be used to improve the estimates of the

orbit parameters, even though the parameters characterizing the

malfunction are not known.



Single Orbit Parameter with Arbitrary Malfunction

In this section we will assume that the signal produced by

on-board instruments can be specified functionally by g ( a, d l, • - •

dk; t) where a is the parameter of interest and d l, ''', d k are

nuisance parameters to account for the equipment malfunction. It

should be noted that this general approach includes the case of an

additive trend biasing the measurements. If the signal received at

the Earth is corrupted by stationary Gaussian, zero rhean noise
2

n I (t), with known variance _ , then it will be of the form

gin(t) = g(a, d 1, --- , dk; t) + nl(t ) • (I)

We also assume that radar tracking stations furnish information

of the form

fro(t) = f(a; t) + n 2 (t) (z)

where nz(t ) is a Gaussian zero-mean noise with known variance
Z

0-2 and uncorrelated with nl(t ).

If we denote the information matrices for these two sources

by A = (al, l) and B = (bi, j), respectively, and the total information

matrix for both data sources by C = (ci, j), then

= al, 1 + bl, 1 and c. = b.. for (i,j) 4 (1, 1)C1. 1 1, j 1, j (3)

A

The variance in a, the estimator for a, using both data sources, is

the (1, 1) entry of C "1 ; and if the (i,j) cofactor of a matrix P is

written as Pi, j '

Z



then

Vat (_ )
CI, i CI, i

m m

IC I Cl, 1 CI, I + "'" + Cl, k+l Cl,k+l

I

Cl,g CI,2 + ... + c
Cl, i + " l,k+l Cl,k+l

" CI, I

(4)

From the identities given in equations (3), the cofactor equalities

Cl, j -- B1, j (j = 1, ''' , k+ 1)
(s)

are immediately obvious, and we may rewrite (4) as

vat (_)=

al + bl ' + (bl,2 Bl,2 + _''" '+ b
, 1 1 B1, 1

l,k+l BI, k+ i1

(6)

a ÷
I,i B

i,i

Now the information matrix B is positive definite,

and hence Vat ( _ )<___jl .

al, 1

>0,

3



1
But is the estimator variance when only radar is

al, 1

used, and we can conclude therefore that both data sources should

be used in this case.

Random Noise of Unknown Variance

Now let us consider the case in which data received from the

on-board instruments is of the form

gm(t) -- g (al, e°" _ ak; t) _1- nl(t)

(7)

when a 1, ... , akare orbit parameters and the noise nl(t ) is known

to be Gaussian and zero mean but its variance is unknown. As before,

the data available from radar tracking stations is of the form

fro(t) = f(al, ..., ak ; t) + nz(t )
(8)

where the statistics of nz(t ) are known.

If we are to use the on-board data, we must estimate not

Z

only the orbit parameters but also o-1 , the variance of nl(t ). In

doing this, the information matrix for the on-board data will be of

degree k + i; and the entries of its last row, i. e. , that corresponding

to 0".2 , will be

Ck+l, j = - E for j = 1, "-- , k

aj 8o'12

(9)

4



and

= - E
Ck+l, k+l

a2Z
(10)

when E denotes the expected value over noise process ensembles

and _ is the log likelihood function given by

M

Mlno..12 1 7. [gm(t(_)- g (tcz)]2
= -2- 2CrlT

_=I

N 2

I Z [ fm(t_ ) - f(t_) ]
13--I

(11)

To compute the first k entries, we have

_0 I. 2_ + 1 i [gm(t(_) _ g (t)] 2)0 a. i _ a,=l

M [ ] Og(t)gin(t) - g (t)
°'i _=i Oa.3

(12)

and since nl(t ) is a zero mean process,

5



Ck+1, j
= -E

M [ ] 8g(tcr )! _'- E gm ('tc_)" g (t) "

O-1 _ 8a.e=l 3

(13)

The only non-zero entry of this last row is then

az _ ]ck+1,k+1 =-E {S¢Iz)ZJ

= -E

M

M 1 V

_-1

gin(Ita) - g(t(_) (14)

2.
M Ma-1 M

T + _ -

If A = (ai, j) is the k x k information matrix for the measure-
Z

ments given in equation (7) when o-1 is known, then C can be

written in a partitioned form as

C ----

J j

A 0

0 M

(15)

6



Letting B be the information matrix for the radar data, the total

information matrix is given by

A+B 0

0
M

2o- 1

whose inverse, the covariance matrix, is

0

0

2o-14

Thus we see that the variances of the orbit parameter estima-

tors, given by the diagonal entries of (A +B) -1 , are the same as if
2

o-1 where known. But in this case we can argue, from the positive

definiteness of covariance matrices, that the estimator variances will

be less when both data sources are used.

Conclusion

In the two cases considered, we have seen that the on-board

data should be used even though the equipment is not functioning pro-

perly due to undetermined error sources. We are attempting to

extend the results of the first case to an arbitrary number of orbit

parameters. A future note will contain any conclusions derived for

this general case.



Appendix I illustrates this technique explicitl 7 for the special

case of an unknown bias on one of the sour ces and shows that for one

parameter to be estimated, both sources should be used.

8
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APPENDIX I

EXPLICIT COMPUTATIONS FOR

UNKNOWN BIAS CASE

l, Introduction

In this appendix, we will consider two sources of data:

D 1 : fm(t) =£c(a;t) + nl(t ) (1)

D 2 : gm(t) = gc(a; t) + n2(t ) + k (2)

when a is a parameter to be estimated, k in an unknown bias on

source DZ, and n 1 and n 2 are stationary, Gaussian, zero-mean
2 Z

random processes with variances o_ and o-z , respectively. The

detailed calculations presented will show that the variance in the

estimator based on both D 1 and D 2 is less than the variance of

that based only on D I.

2. Estimator Variance Using Only Source D 1

We first compute the variance of the estimator a derived

from N samples of D I. The probability and likelihood functions are

P

F

= , 1 expl - __!__l

(zz)N/2 o-iN L So-I

7 -
i= 1 '

(3)

N

ZO'I i= 1

fm(ti) _ fc(ti)}Z
(4)



The maximum likelihood estimator a is then determined by

N

(5)

Assuming that a = a + Aa,

fc (_' t) ,__ fc(a., t) +
8fc(a ; t )

_a

Aa (6)

whence

and

N ( _fc(_; ti ) )
8/_ _ 0 = 1 ? nl(ti) - Aa

---Z _._ 8a

N _fc( a ;ti)±Z
0--# n1(ti) 8 ai= 1

2N <8fc .ti) >

v- (a, z__i
2 __ 8a

O_ i= 1

8£c (a ; ti)

8a
(7)

(8)

Therefore the average of Aa over the noise process is <Aa_ = 0,
1

and

.L

N

l '_-- 2\

O_ i= 1

8fc(a ;ti) 12

8 a j °-12

9fc (a ;ti)

_a

{9}



, Estimator Variance Using Sources D 1 and D 2

We assume that N samples of D 1 and M samples of D Z are

available so that the joint probability function and likelihood function

are

N )2
1 1

= - fcta"
(ZTr)(N+M)/2 ¢1N_2 M exp 2°-12 !i_ l (fm(ti) - ; ti)

P

.__ _-(_%) _(_ ,I_
2°-2z i,. - ;tj) -

j=l

(i0)

N

1 ; )2 1z _ (fm(ti)- fc(_ ti) z
2_I i=1 2_2

M

I Igm(tj ) - gc (a

j=l

(ii)

A

The estimators a and k are now determined by

N

^ }
8_ ---_ fm(ti) - fc(a; ti)

0"1 i= 1

.M

+ _ gm(tj) - gc(a; tj) - k

_z j=l

8fc(a; ti)

o_

agc(Aa ; tj)

o_

(iZ)

^

8k

M

i I=0=-- z

_z j=l
(grn(tj)- gc(a; tj) - k) (13)



We now assume that = k+ Akand a= a + Aa, whence

f (a; t)---f (a" t)+
C C '

af (a ; t)
c

_a

Aa (14)

gc(_ t)= gc(a, t) + 8gc(a ; t); • A a

8a
(15)

so that (12) and (13) can be written as

N / 8f (a
y c ;ti)LO_lZ a_ nl(ti)i=l 8 a

M

8gc( a+-_ Z n2(tj ) ; tj)

_z j=1 Oa

Aa) 8fc(a ; ti)
8a

Ogc( a
Aa - Ak ; tj)

8a
i(16)

M

= -"Z Z n2(tj)

°-z j=l

M

1 Z Aa- 2 n2(tj) - ---2

0% j=l %

agc(a; tj) aa - ak }
8a

M

Z
j=l

8gc(a ; tj) M Z_ k

2
aa o-z

(17)

From (17) it follows that

4



M M .

Ak = ....

M j=l M j:l Oa

(18)

Substituting (18) in (16),

m

N

Z(nl(ti) - 8fc(a; ti)Aa ) 8fc(a; ti)

1

o_ z 8a 8ai= 1

+ -[ .1 Z nz(tj) 8gc(a 'tJ) Aa - _l__lW
Z__..

8a M h=lo% j=1
n2(th)

M

+ ___a _'- 8gc(a;th)
M 8a

h= 1

8gc(a ; tj)

_a

N I af (a.ti) 1

= ¢'Zi_l _ni(ti)- Csa' Aa ]

8fc(a ;ti)

8a

M

z( O.c,.;t,,o.)nz(tJ) 8 a
°i j:1

8g c (a ; tj)

8a

[i1 nz(th) - Aa Y
Mo_ z h= i h= I

8gc(a ; th)]
8 a j=l

8gc(a ; t j )

8a



= Z_a

I  i0,c(a )2
i ti) i

i=1 °-Z

M 2

Z ( 8gc(a;tj))aa

j=l

+

I ( 8gc(a ;tj)
j=l

+ I nl(ti)

i= 1

af (ac ; ti)

_a

M

+ 1 F2 a_. n2(_ ) 8gc(a tj)

_2 j=l aa

M M 8gc(a. th)[, Y
Mo'22 nz(tJ) 8 a Jj--1 h= i

(19)

and therefore

Aa=

N 8fc(a;ti ) M M M
_ 8gc(a;tj) IT _ 8gc(a;th)

i + --12 n2(tj) Mon._ j=l h=1---Z nl(ti) 8 a 8 a nz(tJ) a
0-I i-'I o_ j=l a

(20)

N 8fc(a;ti) )2 8gc(a;tj ) )Z

o-1 .: o_ j=l 8a M@ z_j=l
8gc(a;tJ)sa )2

The numerator of this can now be simplified somewhat, and we have

A a =

N N

1 _ 8fc(a;ti) 1 _--+ _ / nz(tj)----Z nl (ti) 8 a _"
5 i:i °-z j--z

M

8gc(a;tj) 1 _- 8gc(a;th)

8a M h=l 8a

(zi)

(0,c,a,,,)2)2i >--_ + _.i...i_'- 8gc(a;tj) i

--'-Z aa j=l°-I i= i o_ z /--" 8 a Mo_ 2

8gc(a;t j)

j=l aa

6



As a check of our work thus far, we note that when Aa is averaged

over the two noise processes, n I and n 2, the result in <Aa>nl,n2
=0.

If the assumptions of no auto- or cross-correlation are now

imposed on the processes n I and n Z, then the variance ofZla, i.e.,

the variance of the estimator a is

InZ

I( i1 8fc(a;ti) + ---Z
---Z 8a
_i i=1 %

{jvz( )
N 8fc(a;ti ) 2 1

1 +'--'2

i=l 8a 0-2

The numerator of this fraction is

I-I°fc,,ti,I i
5 i=1 %

wM [ 8gc(a;tj) 1 _ 8gc(a;th)

j= 1 h=l

1%M {Sgc(a;tj))Z87

2

a Dz
1 gc(a'tj)/ _

j=l

?.i 8g c ;tj) 1

j=l M h=l

8gc(a;t h)

8a

]2

(22)

1 N (Sfc(a;ti)) z--_ _ ,. _
0-1 i= i

[i )__i [_gcCa;tj!2
+ _ Lj:lla_

I N la%c_;_i))z
=---Z _ _ 8a-

O-i i=l

__Z agc(a;tj) + i___

M _j=l 8 a M

1 (
°-z j=1

_ 8gc(a;tj)/2

j=l aa 1

.(Z3)

7



And since this is simply the square root of the denominator in
/% .

(2Z), the variance in a is

^ l
Vat a = (Z4)

4_, Comparison Of The Estimator Variances

We now note that

1 M I.Sgc(a;tj) ; 1 (_ 8gc_(a_;tj)/2
% j_l '"

must be positive, for it can be written as

Z ,Sgc(a;tj ) )Z _
8a

j=l a a

M
which is just _ times a sample variance. Using this property

and the variance of a" stated in equation (.9),. we conclude that

^ - 1 --
Var a Q = Vat a

N 2

1 I (Sfc(a;ti) }

i=l

(Z5)

Therefore in this case the second data source should always be used.

8
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APOLLO NOTE NO. 245 B. Murphy

ii August 1964

EARTH PARKING ORBIT POSITION/VELOCITY

UNCERTAINTY AT TRANSLUNAR

INJ EC TION

It is desirous to know the uncertainty in position and velocity

of the vehicle in Earth parking orbit at any time for 4 i/Z hours after

injection into this orbit for consideration of possible injection into

translunar orbit. One hundred mile circular orbits with launch angles

between 71.5 ° and 109 ° directly above the Cape are considered.

In order to get some idea of best launch angles, the coverage

of the vehicle by various tracking stations as a function of time is

shown in Figures 1 - 6 for increments of 2. 5° between 71. 5° and 109 °

launch azimuth. In addition, cumulative tracking time for these launch

angles are plotted in Figures 7 - 12. Inspection of these graphs re-

veals that 90 ° is approximately the optimum launch azimuth, and either

of the extremes is a worst case situation. The Error Analysis Program

(see Apollo Note 186) is subseqaently run for these L_vo launch angles.

To be considered in this program are station location errors (with no

biases) and venting.

The continental U.S. (and some nearby) stations are assumed

to have location errors (i oJ of 50 ft. in latitude, longitude and altitude.

The non-continental U.S. stations are considered to have 500 ft. error

in latitude and longitude and i00 ft. error in altitude. It is assumed

that there is no improvement of station errors by information from

another station. Further, it is assumed that only one station can

track at a time. When the vehicle is visable from more than one

station, precedence is generally given to the continental U.S. station.

No station can track below 5° elevation. A later investigation will

consider the effect of a systematic bias error in the radars.
&



The venting model chosen has a constant continuous venting

thrust directed along the velocity vector, Further description and

explanation of equations used in the error analysis program are

included in the appendix. Admittedly, this is not an accurate picture

of the venting situation, but it is more representative than not

considering venting at all. The venting uncertainty (i (7) assumed is

3 • 10 -4 meters/secZ.

The results of the error analysis program, the I_MS position

and velocity error,are plotted as a function of time (4 I/2 hours).

These graphs are Figures 13, 14, and 15. The first two are at 90 °

launch azimuth, the second one considering that all of the stations

are known as well as the continental U.S. stations. The last, Figure

15, is the worst-case graph with a launch azimuth of 109 °. These

graphs are baaed on a data rate of one frame of range, azimuth and

elevation every six seconds.

In spite of the fact that these graphs make very engrossing

viewing, analysis proves to be difficult. In Figure 13, it is interesting

to observe that while the estimate of velocity at the end of each tracking

period is (with few exceptions) at least as good as after the last tracking

period, the estimate of position is better after slightly more than one

orbit (88 rain. ) than it will be until almost another complete orbit.

This same trend is noted in the graph where all the stations are assumed

to have the same accuracy as continental U. S. stations (Figure 14),

however, this trend is attenuated considerably. Thus, the trend can,

at least partially, be attributed to the fact that there are fewer tracking

stations between orbit terminus points and the fact that these stations

are obviously non-continental U.S. The directly contributing cause is

incomplete knowledge of the venting acceleration.

It is interesting to note that the best estimate of velocity for

the all-continental-U. S. situation is about twice as good as that obtained

with actual station accuracies, but the best positional error is hardly

improved at all.

2



The graph of I_MS error for the 109° launch angle, Figure 15,

shows that the maxima of errors for their angle to be approximately
that for the 90° launch angle situation. The error is actually better

earlier in the orbit because of some tracking in the first 50 minutes.

This graph (Figure 15) hopefully demonstrates that even for an extreme

("worst") case the uncertainty is not considerably different from the

"best" launch azimuth.

The next task studied is that of growth of uncertainty in position

and velocity of the vehicle over a two-hour period because of loss of

tracking. Again it is assumed that the vehicle is in a I00 n. mile

circular orbit with a small continuous vent. Three a prioriuncertainties

of venting acceleration are considered, ranging over _ When con-

sidering the growth of position uncertainty, the velocity uncertainty

is set equal to zero and vice versa. These results were obtained by

the Error Analysis Program. The results are compiled in Figures

16 - Zl. In each case, four initial uncertainties of position or velocity

are assumed.

It is seen that if the venting uncertainty is small, the position

or velocity uncertainties grow at the same rate. However, if there is

a large venting uncertainty, the position/velocity uncertainties converge

at some later time. That is, the position/velocity uncertainty after

this convergence has been determined almost entirely by the venting

error.

Lastly, the reduction in uncertainty of position or velocity

due to various passes over a typical C-band radar site as a

function of initial position or velocity uncertainty, respectively, is

examined. For this radar, it is assumed that there is no tracking

below 5° elevation, one data frame every six seconds and the station

tracking errors are o-i_= 60 ft, o_ = . 2 mils, o_ = . 2 mils. Again,

a 100 n. mile circular orbit with venting is assumed, and the Error

Analysis Program employed. The graphical results of this computed

are Figures 22 and 23.

3



Note that for every tracking interval, if the initial uncertainty

is larger than a certain value (e.g. _ 60 meters for 4 minutes of

tracking in Figure Z2) the final uncertainty is not deteriorated Over

that found assuming the particular value for initial uncertainty. This

tends to indicate that the final uncertainty is dominated by the radar

error. It is also evident from the graphs that tracking does not

markedly improve uncertainties if they are small enough.

4
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APPENDIX (as outlined by L. Lustick)

.t_/ t/ The equations employed to find the effect of venting on the

knowledge of vehicle position and velocity are contained in Apollo

Note 7. m_ _ __..^; .._; _ ,_ ..... _-^_.,ese are _e_,v_u _,,ue, _,,e as_u**xp_xun of _,ncx_xx-_,i deviations

from a circular orbit with respect to a rotating coordinate system.

The y axis is defined to be always tangential to the orbit, with the x

axis in the radial direction. Then the equations defining the motion

of the vehicle with respect to a rotating point are (note that the x

and y axis used in this note are opposite of the Note 7 notation in

order that the axes agree with those of the error analysis program)

g+ 2_ox -- a
v

x 2_y 3co 2-- -- X = 0

(1)

(z)

where a is the venting acceleration.
v

Solution to these simultaneous equations with the initial

conditions

are

(0) = x(0) = Q(0) = y(0) =0

= a (_z) (1-cos_t)
v co

[' }x = av (2) t- _ sin cot

y = av [- 3t +--c04 sincot]

y = a - + (1 - cos cot)
v -2-" co

(3)

(4)

(5)

(6)

(.7) "
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Now, transforming these relations into stationary coordinate systems

by a transformation A such that

R' = AR; R' = AR (8)

where i_ is the range vector, and _ the velocity vector in the rotating

system. The primed system is the non-rotating system with x(0)

equal to the initial range (same system used in the Error Analysis

Program). It is easily seen that

A

cos _t sin _t

- sin cot cos cot

(9)

From the objective first mentioned in this appendix it is

obvious that avwillbe treated as a nuisance parameter. In order to

complete the information matrix in this situation, partials of all of

the parameter8 with respect toa will be needed. It is easy to see
v

that except for the in-plane velocity and position (x' - y' plane) and

itse_, these partials are zero. The in-plane velocity and position

partials are

i%' A 8 i% ; A

8a 8a 8a
' V V V

or

ax,

8a
V

2 cot)cos cot - [- 3t+ 4= -- ( l - cos sin _t
sin _t

(i0)

(ii)

8a
Y

= -- t -,-- sin cot : cos _t --- + (i sin _t (12)



(13)

8a _ _ 2 co
v

cos cot (14)

These last equations are used as needed to complete the information

matrix, considering a as a nuisance parameter.
v

Notice that under the assumption of small perturbations, the

effect of a is considered linear so that the law of superposition holds.
v

That is, it is possible to say

o . . Q • •

_i = f(_1 _6) +_(_v) i= I.. 6

thu s

_X.

:_ g(aV)
Sa.

i

i= i .... 6

Thus, the upper left hand 6 x 6 part of the information matrix is no___t

a function of a and the analysis done assuming a = 0 still holds.
v _r

It also should be pointed out that the Q matrix contains these

partials (Equations l l - 14) in addition to the unitary diagonal

element, unlike most of the other nuisance parameters that have only

the diagonal element in their respective columns.
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GBI 4.9
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Minutes of
Tra cking

i Antigua 5.0 8
Z Ascension 5.0 9

3 Carnarvon 3. 5 * i0

4 Hawaii I.5 11

5 Pt. Arguello Z. 5 _:-"12

6 Goldstone 4. 0 * 13

7 Corpus Christie 5.0

Non-Continental U. S.

Minutes of

Tracking

G. B.I. Z. 5 _Antigua-g 3.0

Guam 4. 0 i--:

Pt. Arguello Z. 5

Guaymas 3.5

Hawaii- g 0. 5
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The Bissett-Berman Corporation 2941 Nebraska Avenue, Santa Monica, California EXbrook 4-3270

APOLLO NOTE NO. 246 L. Lustick

H. Dale

12 August 1964

MODIFICATION TO THE ERROR ANALYSIS PROGRAM

TO INCLUDE A SLAVE STATION OPERATING

IN THE RANGE-RATE MODE

In the range-rate mode the vehicle transponder can only receive

the signal from one radar station at a time. Any number of "slave"

stations can receive the re-transmitted signal from the vehicle simul-

taneously. In the past our error analysis program made no distinction

between a "master" and a slave station. Actually, such a distinction

should be made, since some error sources are common to the master

and slave stations. Such error sources are master station location

errors, shared propagation paths, transponder noise, and difference

in clock rates. Of these, the most important appear to be clock-rate :

errors and station-location errors.

Since the transmitting station uses its own clock to retrieve

Doppler data from its received signal, little errors exist if the clock is

not running at the nominal rate. However, a slave s_a_ion nzay nave a

clock which runs at a different rate than that of the master station,

thus imposing an error in the measurable. This note shows how the

computer program has been modified to correctly handle a slave

station.

The essence of the problem is easily shown in the diagram

below in which a master station measures the change in range 2R 2 - 2R1,

over a period in time while a slave station measures the more compli-

cated change, R 2 + R 4 - (R 1 + R3), over the same period in time.



vehicle moves from here to here while Master station

----_ measures R z - R 1

R 1

Station

Slave

Station

The measurable for the master station is its range-rate:

2R 2 - 2R 1
M1 = -" R1

2 _,.t

and if the slave were a master its measurable would similarly: be

M2 2R4 - 2R 3= -- R2
2At

However, since it is a slave its measurable is

Mslav e = - +-
2At 2 2

The accuracy, o-, with which it should be expected to make such a

measurement is the same as though it were a master.

Now since the computer has always been able to generate

information matrices of the form

2



_M(t k) 8M(t k)

Aij = _ 8a. 8a.

k 1 j

a's being orbit parameters

then it can be seen that for a slave station the M's in the above equation

need simply be half the measurable as though the slave were a master

added to half the measurable taken from the master station coincident!y.

In program 1 (see Note No. 186), in which the information matrices are

generated, the input data sheet has been changed to include whether the

station is a master or a slave, and in the second case the latitude and

longitude of the master station. The parameters to be estimated are,

in order:

a I - a6

a 7

a 8

= orbit parameters, meters and meters per second

= bias in the rneasu_'able, units of rneasu1'able_

= X
m

a9 = Ym

alO = zm

all =

alZ =

a13 =

a14 =

a15 =

a16 =

a17 =

h

i
|

I_ master station location errors, meters

the velocity of light, parts per part

the gravitational constant, m.3/sec. 2

clock error to be used for range measurements only

error due to venting thrust, to be used if it exists

Xs t
Ys slave station location errors, meters

Z
S

Following is a list of the detailed calculations used by the com-

puter to generate the necessary information matrices in the event of use of

a slave station. At the end of this set of equations are the information

matrix formats, for a master and slave station. The notation used in

the following equatior/s follows that of Note 82 and of "Final Report on

Contract NASw-688, " dated 2 March 1964.

If measurable is range rate, this may be used to account for

station-to-station clock rate differences, by considering fractional

clock rate error multiplied to speed of light as a range rate bias.



=i

k 1

_2

k 2

= Longitude of the Master Station

= Latitude of the Master Station

= Longitude of the Slave Station

= Latitude of the Slave Station

• . [. --

Then in the Earth centered inertial coordinate system the location

and velocity of the two stations are:

Rd I

I xdl

= Ydl

Zd I

r E cos k I cos (_0ET + _i) ]

r E cos k I sin (coET+ _i)

r E sin kl

Rd I

Xd 1

Yd 1

Zd I

- w E Yd I

w E Xdl

0

Xd 2

Yd z

Zd 2

r E cos

= r E cos

r E sin

k 2 cos (WET + _2)

k z sin (c0ET + =2) jk z

[ - Yd2

Xd2 _°E

[ Zd2 0

where r E is the Earth's radius and T is the time from the initiation

of the problem•
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The rotation matrix, IK, rotates vector components from the

Earth centered inertial system into the x y z system which is Earth

centered, non-rotating, with the "z axis in the direction of the angular

velocity of the Moon' s motion about the Earth, and with the _ axis in

the direction of the Earth-to-Moon line at time zero. Thus the above

positions and velocities may be written

Rdl = IK Rdl

:_ = IKlk
Rd I d 1

Rdz = IK adz

Rd2 = E4 Rdz

In the primed coordinate system, which is Moon centered and

non-rotating, the x' axis is directed along the initial position vector

of the vehicle (xo, 0, 0) and the z' axis is in the direction of the angular

momentum o_ the vehicle about the Moon. ZL rotates _rom the x y z

system to the x' y' z' system. If R' and R' are the position and velocity

of the vehicle in the primed system, then the vector position and

velocity of the vehicle as measured from the stations in the primed

coordinate system are

R' = R' + IU )
• Sl (aM - Rdl

= M - )
Sl " Rdl

= +IU - )
s2 (RM

= +m( M-ad z)sz

/.

where i%M and i%M are the vector position and velocity of the Moon

with respect tb the Earth in the _'_ _ system.



Letting sI and s2 be the scalar ranges, and sl and s2 the scalar

range-rates we have

8;1 1 1%ts IT + " Sl 1R,'

8aj sI I _ 8aj] Sl sI Sl 8aj

for range,.rate from a master station, and

{ Co% sz % /

for range from a slave, treated as though it were a master.

How for the real case of a slave the correct partials of the

measurable to be used are 8_'_/Saj, where

i

8"_Z_ 1 all + 1 8Sz

_a. Z 8a. Z %a.
_,,J J J

for j = I - 6, 7, ii, IZ, 13 and 14. For the cases j = 8, 9, i0, 15,

16, and 17,

0 _ " -- ; : [ /Z r, j = 8 , 9' 1 0 ; and --/Z'aa.

J J J

j= 15, 16, 17

These partials are with respect to the station location errors of the

master (a8, ag, al0 ) and the station location errors of the slave

(a15, a16 , a17 ). The following equations are used for the generation

of these partials

6



8R It
d I

ssj

69j

61oj

_,R 'I
d 2

_a.
J

¢

6
13j

aisj

a I

"(cos _OET+ aI) (sin_OET+ _i )

(-sinooET+ _i) (cos OOET+ Ul )

(o) (o)

(o)

(o)

(i)

a z

"(cos _OET + a 2)

(- sin O_ET +,a z)

(:o)

(sin O_ET + _Z)

(cos _OET + uZ)

(o)

(o)

(o)

(1)

8R d
1

8a.
J

aRd 1

aa.
J

81_ 11

d l

aa.

8Yd 1

"tOE
J

8Xdl

2

0

8Xd 1

8a.
3

,SYdI

_)'8,.
J

8Zdl

8a.

7



81_.'
d 1

8a.
J

aR'dl

8a.
J

OR
d 2

8a.
3

8Rdl
- ILl[<

8a.
J

8Rd 1
- ILIK--

8a.
J

8R 'l

T d2

a a
8a.

3

8Xd z

0a.
3

8Yd z

3

8Zd z

3

akdl

aa.
J

8Yd z

3

8Xd 2

8a.
J

0

OR'd2

8a.
J

ILIK_

_&.
3

8R'd2

8a.
3 3



for j = 8, 9, and 10. These are the partial derivitives of the measur-

able, range-rate, from the slave with respect to errors in the master

station location. As would be expected, no terms of the form

as
2

-- exist since these are Palrtials of that part of the measurable
aa.

J
involving the radar path between the vehicle and the slave station and

thus are not effected by changes in the master station location.

Similarly

°'_2 1 0;2 1

3aj 2 %aj 2s 2
a d2 + 2 . _;2
Baj s 2 s2

T al_ d

2"l

for j= 15, 16, and 17,

The following maps show the terms that are added to the proper

information matrix for each interval of tracking time.

9



orbit

parameters

measurable bias • (in
this case due to clock)

Master Station

location errors

speed of light

gravity

not usedf, ,
in _t kc_°c_ error

venting

Slave Station

location errors

as
1

8_
1

a_
1

8_
1

a_
1

8§
I

_=I

8a 9

8_ 1

8_ I

8_ 1

[

I

L

rows and columns are identical
, _ , ,, ,,

t

t ,

t

Form of Information Matrix for a Master

I

!

:m-

I

;:-"Note that although the measurable bias term
is calculated, it is not used in the case of

a Master Station (see Figure on Page 1Z).

I0



i a&i a_z

i all a&z

i a_i a_z

2B-_-3 + B_3

i all a_z

_.+_
i a&l alz

a_ 8_
i I 2

_+_
i a_z i

-z a9_7 = "Z

I a&l

i all.

z_
i all

i all alz

i a&l a&z

(not used with I all aiz

rango-rate_Z _ +
i ali aSz

a_
i 2

_ _CJ5
a_

I 2

i alz

rows and columns are identical

' _ iI i, i
I i _ i

I

1

, <

m"

Form of Information Matrix for Slave Station

Ii



As a last word of caution it should be noted that information

matrices may not simply be added in Program Z before inverting

to obtain the covariance matrix. This is true since the seventh row

and column contain information regarding the difference between the

master and slave clocks. This difference is an independent constant

for each slave station. Similarly the 13, 14 and 15th rows and

columns contain information regarding a particular slave location

error. Shown below is an example of how three stations might be

handled. Reference is particularly made to Note 186 which details

the technique of including transfers in the input to Program Z.

Sample Problem

Assume Program I has processed three stations denoted by

"data sets" 0051, 0052 and 0053. Assume that the first is a master

and the other two are two simultaneous slaves. The input data sheet

to Program Z might look like:

Station: Program B

DataSet 1010151 3.]

Number

Data

Se___2t

0051

0052

0053

0053

0054

IV[ ea sur -

able

A

O

A

m

0-

Ol

Ol

Ol

Bias Indicator

8/8 9/9 10/10 11/11 12/12

7/7 8/8 9/9 10/10 11/11

7/13 8/8 9/9 10/10 11/11

IZllz15/14

iZllz1511;

16/15

16/18

i71i6

i?/i9

IZ



What has been done in the Bias Indicator column can be explained as

follows: As always, the first six rows and columns of each station's

information matrix refer to the orbit parameters, and thus they are

left alone and simply added together in the total information matrix.

The bias in the measurable, a 7, has no meaning for the master station

(Data Set 0051) andthus it is not retained. For the first slave the a 7

information is placed in the seventh row and column while the second

slave's corresponding measurable bias information is placed in the

thirteenth row and column, a8, a9, and al0 are the master station

location errors; thus each station's information regarding these errors

is added and retained in the eighth, ninth, and tenth row and column

of the total information matrix, al3 and al4 are not used. The first

slave station's location errors may be placed in row and columns

14, 15, and 16 leaving 17, 18, and 19 for the second slave station's

location errors. The a priori information must be entered to corres-

pondwith the total information matrix.
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Tho Bissett-Berman Corporation 2941 Nebraska Avenue, Santa Monica, California EXbrook 4-3270

APOLLO NOTE NO. 247 H.L. Engel

20 August 1964

ACCURACY OF LOCATION OF BEACON ON MOON

It is more difficult to accurately determine the location of a beacon

sitting on the Moon than to accurately determine the position of a vehicle

in orbit about the Moon. This is so since the acceleration (i. e. , free

fall) of the vehicle is greater.

The RMS in determination of position of a beacon on the Moon has

been computed by considering the beacon on the Moon as a body in free-

fall about the Earth and finding the parameters of this orbit.

Three cases were considered:

I. Range rate measurements from Madrid and Ascension,

standard deviation in I second measurements of range rate equal to

3 cm/sec. No station location errors or other nuisance parameters.

Z. Same as I, with I0 minutes of measurements of range

from these two stations. Standard deviation 15 m for I minute range

measurements. Range biases known a priori to 30 m.

3. Time shared range measurements from Houston, Madrid,

and Ascension. Standard deviation of range 15 m for 1 minute measure-

ments. A priori knowledge of range biases accurate to 30 rn. No other

nuisance parameters.

In all three cases, beacon position is assumed known a priori

to 103 m in each direction, and velocity assumed known to 10 -3 m/sec.



The results are shown in Figures 1 and Z. It is evident that

for long tracking times range measurements are to be preferred.

Until the RMS uncertainty in beacon location is reduced to

the order of 30 m, station location errors of this order of magnitude

will not Substantially effect the accuracy of computed beacon position.
7

Likewise, an error of 3 parts in l0 of the speed of light will not sub-

stantially effect the accuracy of the results so long as that accuracy is

no better than 30 m. Thus in approximately one month the beacon on

the Moon can be located with an RMS error of 30 m in position.

The accuracy with which the position of the CSM can be deter-

mined is reported in Bissett-Berman Apollo Note No. Z18, which

indicates an RMS position error of 43 m after two orbits about the

Moon, biased on 3-way Doppler measurements from three stations

using a Doppler accuracy of 3 cm/sec for 1 second measurements.

Current Ranger 7 data indicate that one minute Doppler measurements

will be accurate to 0. 1 cm/sec, which will improve the knowledge of

CSM position. Thus the relative position of a beacon that has been on

the Moon and a CSM that has twice orbited the Moon is known to about

53 m or better.

2
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The Bissett-Berman Corporation 2941 Nebraska Avenue, Santa Monica, California EXbrook 4-3270

APOLLO NOTE NO. Z48

DISCUSSION OF APOLLO NOTE NO. Z4Z ON

EARTH ORBIT INSERTION ACCURACY

H. L. Engel

Zi August 1964

The purpose of this note is to further describe the assumptions

and results of Apollo Note INo. 242.

In the task assignment leading to that note it was stated that launch

azimuths from 81.5 ° to 105 ° should be investigated. However, only

launch azimuths of 81.5 ° and 91.8 ° have been reported on, and this re-

quires some more justification than presented in Note 242. The justifi-

cation lies in Figures i and 2 of that note, which indicate vehicle visi-

bility and station-vehicle geometry. The 91.8 ° launch allows observa-

tion for 3.4 minutes after SECO from Bermuda and i. 8 minutes from

Grand Turk, on a track about midway between Grand Turk and Bermuda,

with medium elevation angles from both stations. The 81.5 ° launch

allows observations for 3.8 minutes after SECO from Bermuda and i. I

minutes from San Salvador, with a high elevation angle (i.e,, short

range) from Bermuda during part of the time.

A 101.9 ° launch would allow observation from Bermuda and Grand

Turk for about 2.3 minutes after SECO, and from about I. 5 to 4.5

minutes after SECO from Antigua. During the first 2.3 minutes the

geometry of observations would not differ substantially from that of

81.5 ° or 91.8 ° launches, except that the Grand Turk elevation angle

rather than the Bermuda elevation angle would be the greater. During

the remainder of the observation time, Antigua would see the vehicle

at elevation angles not differing substantially from those of Bermuda on

the 81.5 ° or 91.8 ° launches. Thus, it may be expected that the accuracy

of orbit determination on the 101.9 ° launch should not differ by an order

of magnitude from that obtained on the other launches. To add plausi-

bility to this, it should be pointed out that the accuracies obtained on

the 81.5 ° and 91.8 ° launches are not greatly different.



The results reported in Apollo Note No. 242 assume a priori

knowledge of position, velocity, range bias, angle bias and station
location as shown in Table i.

Table i

Po sition

Velocity

Range Bias

Angle Biases

Station Location

! !

x y

ii50.

4.0

i5.2

760.

i.9

i5.2

!z !

6240.

i6.

i5.2

i0

2xiO -4

m

m/sec

m

rad

m

Note that the station location errors are i5.2 m, and not i52 m

as erroneously reported in Note 242.

The range measurement noise is assumed to be 20 m and the angle

measurement noise is assumed to be 0.2 mils. Ranges are of the order

of 300 n. mi. or more, so the angle noise leads to errors of the order of

157 m (= 300 n. mi. x i840 m/n. mi. x 2 x i0 -4 rad x 2) for one meas-

urement. This is far greater than the range measurement error, so

angle noise and angle bias appear to be the major sources of position

uncertainty in Earth orbit ins e rtion.

In the absence of biases and station location errors, the large

number of observations possible in 3.5 minutes, together with the chang-

ing geometry, reduce the position error to about 2 meters.

Station location errors and biases of the magnitudes described

above result in position errors of the order of i00 m instead. Examina-

tion of the covariance matrices indicates that this is so because the data

obtained during observation of the vehicle is not sufficient to substan-

tially reduce the range and angle biases and station location errors.

This is illustrated in Table 2, which shows some of the range and angle



biases and station location errors from Bermuda for various times of

observation for the 91. 8° launch.

Table Z

Time After Range Angle
SE CO Bias Bias

(rain) (m) (mils)

A Priori I0.0 0. Z00

Bermuda Only

, !

x I(m)

15.2

!

Y
(m)

15. z

!

Z

(m)

15.2

0.4

1.8

3.3

0.4

1.8

3.3

10.0

9.98

9.62

O. 199

O. 198

0. 184

15.z I

15.2 15.2

15.2 15.2

9.98

9.76

9.39

Bermuda and Grand Turk

0.181

0.16z

0. 152

15.'2

15.2 15.2

15.1

15.1

15.2

15.2

15.2

15.2

15. 1 15. 2

t5. 1 15. 2.

The results shown in Table 2 indicate that although the error

analysis was performed as though the data were being used to improve

the estimates of the nuisance parameters (biases, etc. ), no substantial

improvement was obtained, and hence the accuracy of the estimates of

position and velocity is almost the same as would be obtained if the data

were not used to improve the estimates of the nuisance parameters.

Still further, the position and velocity uncertainties are greatly reduced

from the a priori values, indicating that like results could have been

obtained without a priori values for position and velocity. Concluding

this argument, we state that the results given in Note 242 are very

nearly the same as those that would have been obtained in the absence

of a priori position and velocity information, and in the absence of any

attempt to reduce the nuisance parameter uncertainties.



It follows, also, since the results are very nearly those that

could have been obtained without a priori data, that if we wish to

obtain results corresponding to one observation per second instead

of I0 per minute, we can divide the position and velocity errors

given in Apollo Note No. 242 byV_.

Another conclusion that can be drawn from Apollo Note No. 242

is that it is very worthwhile to attempt to reduce the angular bias errors

before a launching, since this may afford an order of magnitude im-

provement in position estimate and half an order of magnitude in velocity

estimate.

The small improvement in accuracy of position and velocity esti-

mates through the use of two stations follows from the facts that the

major error source is angle errors, and that the two stations are both

looking approximately normal to the trajectory, so that it is not possible

for the good range accuracy of one station to improve the angle accuracy

of the other.

4



The Bissctt-Berman Corporation 2941 Nebraska Avenue, Santa Monica, California EXbrook 4-3270

APOLLO NOTE NO. 249 L. Horowitz

24 August 1964

POST-FLIGHT MISSION ANALYSIS

ERROR STUDIES

Introduction

Numerous Apollo Notes (185, 218, 236, et al) have studied the

possible advantage of combining R and R measurements to improve

accuracy of resulting orbit determination. For each phase of the

mission, however, it was shown that either the 1% or the R data was

sufficiently"bettef' than the other to warrant using only one radar mode

for each tracking phase.

This note considers the post-flight mission analysis aspect of

comparing 1% and R data to locate possible errors due to undetected

equipment malfunctions during the actual mission.

Analysis

We first review the technique for detecting and isolating a

systematic error in one of the tracking modes. Following Apollo Note

229, we let fro(i), gin(i) represent two sets of measured values of

radar data at times ti, i = I, Z, . . • , N, corresponding to each of

two radar operating modes. Let _(i) be the corresponding "true" value,

and nl(i), and n2(i ) the corresponding contaminating noise on each of

the two sets of measurements so that

f (i)
m

= _(i) + nl(i ) + h(i)

gin(i) = _(i) + n2(i )

(1)



where n I, n 2 are samples from zero-mean, stationary normal pro-
2 2

cesses with variances o-1 and o-2 respectively, and where h(i) is a

systematic trend which may possibly be affecting the f measurements.

Here, _ contains orbit parameters a. to be estimated while h may
J

possib'ly contain unknown error parameters b. which may also have to
J

be estimated. We are then confronted with two contingencies, call

them H o and H 1:

H : h_ 0
O

H 1 : h .= h(bl, .... , bR; i) O,

(z)

Using the test statistic u of Note 229,.

N

gm'i']
. i= 1

u = , (3)

we exploit that fact that under H o (h - 0), u is normally distributed

with zero mean and unit variance so that for some specified false

alarm probability PFA' we have the detection probability PD given

by.

co _u2/2

/
PD - _ e du ,

UFA - E (UlHl)

(4)

where UFA is given by

2



1
PFA -

and where E (u[HI) =

fu F -uZ/2
e

A

N

I h(i)

i= 1

_N Z,(o-lz.+ o-z)

du (5)

This then relates PD (the probability of our accepting H 1 when

it is, in fact, the case) to PFA (the probability of our falsely

accepting H1) and for our purposes indicates all we need to know

about how well the presence of systematic errors can be detected

during po st-flight mission analysis.

Now as is also indicated in Note ZZ9, in the absence of any

a priori knowledge whatsoever about the functional form of h, it

is customary to reject H o if

_N Z 2.(o.1 + o-z )

> Z , (6)

which simply says that we reject H ° (and equivalently the premise

that Eu = 0) when u exceeds its Z o-value (an event of probability . 05

under Ho).

Finally, when a functional form for h is specified under H 1 :

h = h (bI, ... bR ; i) (7)

with bl, ... , bl_ unknown parameters which must also be estimated,

we first note that the parameters a i in _ can be estimated to a higher

3



degree of accuracy by using both data sets as shown in Apollo Note

244 than if the f set is discarded and g used alone. Let us then

suppose that H 1 has been selected based on, say, equation (6) if h

is completely unspecified, or on the likelihood ratio statistic

{equation (16) of Apollo Note 229) if h is functionally specified.

{Note Z29 shows the {hopefully small) additional "cost" incurred in

using the simple test statistic u rather than the optimum but unwieldly

statistic-/_- .) Then the trend parameters b. are estimated in the
1

usual way, viz. , by simultaneous solution of

aa.
1

u

ab.
J

0 ; i= I, ... , M

0 ; j= I, ... , R

(8)

where

J:
1

N exp _i 1

i=1
fm{i) - _(i) -h(i)]

, [ 1+ ---2 _ gin(i) - _{i)

°-Z i= 1

(9)

Classification of Errors

Possible sources of error suggest the following functional

forms for h:.

(i) constant but unknown bias: The likelihood ratio given

above for detecting the appearance of an unknown bias on one of the

radar signals reduces to the simple u statistic (3) as shown in Note 229.

This is the optimum linear statistic in this case.

4



(ii) s_ationary, normally distributed random errors: With

the statistics of n 1 and n 2 fully specified, h may be treated as a sample

from a normal stationary process whose mean and variance can be

estimated as in Note Z44.

(iii) polynomial fit to trend function: Tests for a reasonably

well-behaved trend h may be made on the basis of a polynomial fit

h = _ b.t j , where the unknown coefficients b. are estimated by

j=0 J J

solving (8). The error in approximating h by a polynomial of degree

txP h(x) dx by Taylor' s Theorem. For sufficiently
8P + 1

P is just --

J0 P ! at P+ 1

large P and sufficiently well_behaved h, this can generally be made

arbitrarily small. This generalization of (i) corresponds to a determinis-

tic but otherwise arbitrary error so_:ce due to undetected malfunctions.

The "best" selection of the degree P of the polynomial approximation

to h should be such as to minimize the variance in the estimated para-

meters a. of _. For this, the trace of the covariance matrix of the

i h _. of
estimators a i, J a i, gj should be minimized with respect to P:

Poptimum : Tr[c°v(ai' bi; aj, bj)] = minTr [coy].
P P

opt

Ambiguity Resolution

fm of (1) can represent either R data or R data; gm then

represents either /% or R. Thus, H ° (the hypothesis that there is no

unknown trend) must be tested twice; once for h on R, call this Ho(R )

and then again for h on _t, call this Ho(_t ). Four contingencies are

then pos sible:



1 2 3 4

Ho(R ) accept accept reject reject

Ho(R ) accept reject accept reject

We first note that if multiple failures (both radar modes breaking down)

are excluded, the fourth contingency is resolved by accepting either

Ho(R) or Ho(R ), according as which maximizes PD for fixed PFA as

given by (4). The first contingency corresponds to no trend on either

source; the second and third are unambiguous. If compound failures

are admissible, the fourth contingency is no longer ambiguous.

Generalization

The preceding can be generalized. IfHo(k ), k= l, ..., R

is a set of mutually exclusive hypotheses exhausting all contingencies,

and if_[Ho(k ) ] is the likelihood function of the given data set under

Ho(k), then-_- k = _[ Ho(k ) ]/oC[H_ ] is the relative likelihood

of the data under Ho(k), where _[ _) ] = -IT"_ [ Ho(i )
i= l

The most likely hypothesis Ho(k* ) is then chosen by

k*: -/k-k, = max-A- k • (io)
k

6
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APOLLONOTE NO. 250 H. Dale

: 25 August 1964

TRACKING THE LEM AFTER ASCENT CUT-OFF USING

A MASTER AND TWO SLAVE STATIONS

IN THE RANGE-RATE MODE

Apollo Note No. 246 details the method by which our computer

program may be correctly used to consider multiple station tracking

in the range-rate mode. That method is used in this note to study the

case of three range-rate stations tracking the LEM for a period of

29 minutes starting after Lnnar Ascent Cut-Off. In particular, two

comparisons are made: the first is a comparison between three

independent "Master" stations as opposed to the realizable case of a

single master and two "Slaves"; the second is a comparison between

two different initial sub-lunar points for the purpose of investigating

the requirements placed upon slave station location. In all of these

examples two nuisance parameters are included: the velocity of light

which is assumed to be known a priori to one part in 107 , and the

Lunar gravitational constant which is assumed to have an a priori

uncertainty of 108 m3/sec 2 out of 4. 896 x i012 m3/sec 2. The three

clocks,_one at each station, are assumed to be running at the same

rate to within one part in 1010. Thus the a priori uncertainty in the

bias in the measurable, range-rate, is 3 x 10 -2 m/sec which is

-i0
obtained by multiplying i0 by the speed of light.

The preliminary conclusions that may be drawn with regards

to the Master-Slave, Range-Rate method of tracking must be a bit

qualitative since not enough different situations have been studied.

However, a plot of some of the results (see Figure i) indicates what

time will probably prove to be correctly concluded. During the firs2

few minutes of tracking the three master stations are better than the

realizable master and two slaves by a factor of about three (Rendezvous



Miss being the criteria).. During this time the knowledge of the

station clock drift rates Steadily improves and this is probably why

the master-slave compares more favorably (a factor of two worse

than three masters) after about eight minutes, The uncertainty in

the velocity of light does not decrease over the Z9 minutes of tracking.

And only a slight improvement is seen in the knowledge in the lunar

gravitational constant.

The effect of changing the longitude of the sub-lunar point i_

small as would be expected since the greatest error is in the out-

of-orbit-plane direction, i.e. , North-South. Since the master was

in Madrid with slave stations at Kennedy and Ascension, moving the

sub-lunar point along the equator should not be expected to change

anything by very much. One might expect some improvement were

the sub-lunar point to be moved to the North near Madrid.

Figure 2 shows the uncertainties in the individual elements

of the rendezvous miss, i.e. , in x (the direction of the Earth-Moon

line), in y (the horizontal in the orbital plane of the vehicle), and in

z (out-of-plane). Here it can be clearly seen that, after about 12

minutes of tracking, the out-of-plane component comprises most of

the positional uncertainty near rendezvous. By looking at the data

at T = 0 it can be seen that both z and z are about a factor of three

worse for the master-slave case. But z errors of T= 0 do not

contribute much near rendezvous which occurs half an orbit later.

However, if a 90 ° rendezvous were used, one might expect a slightly

larger z uncertainty. For 90 ° the z uncertainty would be

o-z- o-z(0)z+ o-z(0) R z] i/z

V (0) moon

"[(. 594 x 103")2+ (.6681701
x

1752 x 103)2 I 1/2
= .908 x 103 meters

Z



which is slightly larger than the . 640 x 103 meters z error at 180

degrees.

The included analysi s has been done for o_ = . 03 m/sec for

i second samples, and work is in progress for o-_= ]001 m/sec

for i minute samples.
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Parameters

o-_lfor i second Measurements =

21 Priori Station Location Errors =

__ Priori X (0), Y (0), Z (0)

!A Priori i_ (0), ":/(0), 7.(0)
i
IA Priori Bias in Measurable

A Priori Lunar

IA Priori Velocity o[ Light

i0z

1
i0

0 5 ,10

Z i
t

I0°

. 03 m/sec

25 m

= 1000 m

= 3 m/sec

= . 03 m/sec

= 108 m3/sec 2

= lO'7parts/part

I I

15 Z0

Time (rain.)

I

!

m

m

m

m

m

25 30
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